#include "opencv2/highgui.hpp" #include "opencv2/ml.hpp" using namespace cv; using namespace cv::ml; int main( int /*argc*/, char** /*argv*/ ) { const int N = 4; const int N1 = (int)sqrt((double)N); const Scalar colors[] = { Scalar(0,0,255), Scalar(0,255,0), Scalar(0,255,255),Scalar(255,255,0) }; int i, j; int nsamples = 100; Mat samples( nsamples, 2, CV_32FC1 ); Mat labels; Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 ); Mat sample( 1, 2, CV_32FC1 ); samples = samples.reshape(2, 0); for( i = 0; i < N; i++ ) { // form the training samples Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N ); Scalar mean(((i%N1)+1)*img.rows/(N1+1), ((i/N1)+1)*img.rows/(N1+1)); Scalar sigma(30,30); randn( samples_part, mean, sigma ); } samples = samples.reshape(1, 0); // cluster the data Ptr em_model = EM::train( samples, noArray(), labels, noArray(), EM::Params(N, EM::COV_MAT_SPHERICAL, TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1))); // classify every image pixel for( i = 0; i < img.rows; i++ ) { for( j = 0; j < img.cols; j++ ) { sample.at(0) = (float)j; sample.at(1) = (float)i; int response = cvRound(em_model->predict2( sample, noArray() )[1]); Scalar c = colors[response]; circle( img, Point(j, i), 1, c*0.75, FILLED ); } } //draw the clustered samples for( i = 0; i < nsamples; i++ ) { Point pt(cvRound(samples.at(i, 0)), cvRound(samples.at(i, 1))); circle( img, pt, 1, colors[labels.at(i)], FILLED ); } imshow( "EM-clustering result", img ); waitKey(0); return 0; }