#!/usr/bin/env python ''' Simple "Square Detector" program. Loads several images sequentially and tries to find squares in each image. ''' # Python 2/3 compatibility import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range import numpy as np import cv2 def angle_cos(p0, p1, p2): d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float') return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) ) def find_squares(img): img = cv2.GaussianBlur(img, (5, 5), 0) squares = [] for gray in cv2.split(img): for thrs in xrange(0, 255, 26): if thrs == 0: bin = cv2.Canny(gray, 0, 50, apertureSize=5) bin = cv2.dilate(bin, None) else: retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: cnt_len = cv2.arcLength(cnt, True) cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt): cnt = cnt.reshape(-1, 2) max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)]) if max_cos < 0.1 and filterSquares(squares, cnt): squares.append(cnt) return squares def intersectionRate(s1, s2): area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) def filterSquares(squares, square): for i in range(len(squares)): if intersectionRate(squares[i], square) > 0.95: return False return True from tests_common import NewOpenCVTests class squares_test(NewOpenCVTests): def test_squares(self): img = self.get_sample('samples/data/pic1.png') squares = find_squares(img) testSquares = [ [[43, 25], [43, 129], [232, 129], [232, 25]], [[252, 87], [324, 40], [387, 137], [315, 184]], [[154, 178], [196, 180], [198, 278], [154, 278]], [[0, 0], [400, 0], [400, 300], [0, 300]] ] matches_counter = 0 for i in range(len(squares)): for j in range(len(testSquares)): if intersectionRate(squares[i], testSquares[j]) > 0.9: matches_counter += 1 self.assertGreater(matches_counter / len(testSquares), 0.9) self.assertLess( (len(squares) - matches_counter) / len(squares), 0.2)