// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "precomp.hpp" #include "opencv2/flann.hpp" #include "chessboard.hpp" #include "math.h" //#define CV_DETECTORS_CHESSBOARD_DEBUG #ifdef CV_DETECTORS_CHESSBOARD_DEBUG #include static cv::Mat debug_image; #endif using namespace std; namespace cv { namespace details { ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // magic numbers used for chessboard corner detection ///////////////////////////////////////////////////////////////////////////// static const float CORNERS_SEARCH = 0.5F; // percentage of the edge length to the next corner used to find new corners static const float MAX_ANGLE = float(48.0/180.0*CV_PI); // max angle between line segments supposed to be straight static const float MIN_COS_ANGLE = float(cos(35.0/180*CV_PI)); // min cos angle between board edges static const float MIN_RESPONSE_RATIO = 0.1F; static const float ELLIPSE_WIDTH = 0.35F; // width of the search ellipse in percentage of its length static const float RAD2DEG = float(180.0/CV_PI); static const int MAX_SYMMETRY_ERRORS = 5; // maximal number of failures during point symmetry test (filtering out lines) ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // some helper methods static float calcSharpness(cv::InputArray _values,float rise_distance); static bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle); static int testPointSymmetry(const cv::Mat& mat,cv::Point2f pt,float dist,float max_error); static float calcSubpixel(const float &x_l,const float &x,const float &x_r); static float calcSubPos(const float &x_l,const float &x,const float &x_r); static void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order); static float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt); static void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points); static cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst); static cv::Mat normalizeVector(cv::InputArray _points); cv::Mat normalizeVector(cv::InputArray _points) { cv::Mat points = _points.getMat(); if(points.cols > 1) { if(points.rows == 1) points = points.reshape(points.channels(),points.cols); else if(points.channels() == 1) points = points.reshape(points.cols,points.rows); else CV_Error(Error::StsBadArg, "unsupported format"); } return points; } float calcSharpness(cv::InputArray _values,float rise_distance) { CV_CheckTypeEQ(_values.type(),CV_8UC1, "values must be of the type CV_8UC1"); cv::Mat values = normalizeVector(_values); if(values.empty()) return 0; if(values.rows != 1 && values.cols != 1) CV_Error(Error::StsBadArg, "values must be 1xn or nx1"); if(rise_distance <= 0.0 || rise_distance > 1.0) CV_Error(Error::StsBadArg, "rise_distance must lie in th interval ]0..1]"); // find global min max cv::Point min_loc,max_loc; double min_val,max_val; cv::minMaxLoc(values,&min_val,&max_val,&min_loc,&max_loc); int max_pos = std::max(max_loc.x,max_loc.y); int min_pos = std::max(min_loc.x,min_loc.y); if(max_pos == min_pos) return 0; // calc new interval according to the rise distance double delta = max_val-min_val; double min_val2 = min_val+delta*0.5*(1.0-rise_distance); double max_val2 = max_val-delta*0.5*(1.0-rise_distance); // find new max starting at min pos int dt = 1; if(max_pos < min_pos) dt= -1; int max_pos2 = max_pos; for(int i=min_pos+dt;i != max_pos;i+=dt) { uint8_t val = values.at(i); if(val >= max_val2) { max_pos2 = i; break; } } // find new min starting at max pos int min_pos2 = min_pos; for(int i=max_pos-dt;i != min_pos;i-=dt) { uint8_t val = values.at(i); if(val <= min_val2) { min_pos2 = i; break; } } // calc sub pixel max pos double max_pos3 = max_pos2; uint8_t val1 = values.at(max_pos2-dt); // <= val2 uint8_t val2 = values.at(max_pos2); double m = (val2-val1)/dt; if(m != 0) max_pos3 = max_pos2+(max_val2-val2)/m; // calc sub pixel min pos double min_pos3 = min_pos2; val1 = values.at(min_pos2); // <= val2 val2 = values.at(min_pos2+dt); m = (val2-val1)/dt; if(m != 0) min_pos3 = min_pos2+(min_val2-val1)/m; return float(fabs(max_pos3-min_pos3)); } void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points) { cv::Mat points = _points.getMat(); if(points.cols > 1 && points.rows == 1) points = points.reshape(1,points.cols); CV_CheckChannelsEQ(points.channels(), 1, "points must have only one channel"); // calc centroid double centroid= cv::mean(points)[0]; // shift origin to centroid cv::Mat new_points = points-centroid; // calc mean distance double mean_dist = cv::mean(cv::abs(new_points))[0]; if(mean_dist<= DBL_EPSILON) CV_Error(Error::StsBadArg, "all given points are identical"); double scale = 1.0/mean_dist; // generate transformation cv::Matx22d Tx( scale, -scale*centroid, 0, 1 ); Mat(Tx, false).copyTo(_T); // calc normalized points; _new_points.create(points.rows,1,points.type()); new_points = _new_points.getMat(); switch(points.type()) { case CV_32FC1: for(int i=0;i < points.rows;++i) { cv::Vec2d p(points.at(i), 1.0); p = Tx*p; new_points.at(i) = float(p(0)/p(1)); } break; case CV_64FC1: for(int i=0;i < points.rows;++i) { cv::Vec2d p(points.at(i), 1.0); p = Tx*p; new_points.at(i) = p(0)/p(1); } break; default: CV_Error(Error::StsUnsupportedFormat, "unsupported point type"); } } cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst) { // check inputs cv::Mat src = _src.getMat(); cv::Mat dst = _dst.getMat(); if(src.cols > 1 && src.rows == 1) src = src.reshape(1,src.cols); if(dst.cols > 1 && dst.rows == 1) dst = dst.reshape(1,dst.cols); CV_CheckEQ(src.rows, dst.rows, "size mismatch"); CV_CheckChannelsEQ(src.channels(), 1, "data with only one channel are supported"); CV_CheckChannelsEQ(dst.channels(), 1, "data with only one channel are supported"); CV_CheckTypeEQ(src.type(), dst.type(), "src and dst must have the same type"); CV_Check(src.rows, src.rows >= 3,"at least three point pairs are needed"); // normalize points cv::Mat src_T,dst_T, src_n,dst_n; normalizePoints1D(src,src_T,src_n); normalizePoints1D(dst,dst_T,dst_n); int count = src_n.rows; cv::Mat A = cv::Mat::zeros(count,3,CV_64FC1); cv::Mat b = cv::Mat::zeros(count,1,CV_64FC1); // fill A;b and perform singular value decomposition // it is assumed that w is one for both coordinates // h22 is kept to 1 switch(src_n.type()) { case CV_32FC1: for(int i=0;i(i); double d = dst_n.at(i); A.at(i,0) = s; A.at(i,1) = 1.0; A.at(i,2) = -s*d; b.at(i) = d; } break; case CV_64FC1: for(int i=0;i(i); double d = dst_n.at(i); A.at(i,0) = s; A.at(i,1) = 1.0; A.at(i,2) = -s*d; b.at(i) = d; } break; default: CV_Error(Error::StsUnsupportedFormat,"unsupported type"); } cv::Mat u,d,vt; cv::SVD::compute(A,d,u,vt); cv::Mat b_ = u.t()*b; cv::Mat y(b_.rows,1,CV_64FC1); for(int i=0;i(i) = b_.at(i)/d.at(i); cv::Mat x = vt.t()*y; cv::Matx22d H_(x.at(0), x.at(1), x.at(2), 1.0); // denormalize Mat H = dst_T.inv()*Mat(H_, false)*src_T; // enforce frobeniusnorm of one double scale = cv::norm(H); CV_Assert(fabs(scale) > DBL_EPSILON); scale = 1.0 / scale; return H*scale; } void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order) { int npoints = src_x.checkVector(1); int nypoints = src_y.checkVector(1); CV_Assert(npoints == nypoints && npoints >= order+1); Mat_ srcX(src_x), srcY(src_y); Mat_ A = Mat_::ones(npoints,order + 1); // build A matrix for (int y = 0; y < npoints; ++y) { for (int x = 1; x < A.cols; ++x) A.at(y,x) = srcX.at(y)*A.at(y,x-1); } cv::Mat w; solve(A,srcY,w,DECOMP_SVD); w.convertTo(dst, ((src_x.depth() == CV_64F || src_y.depth() == CV_64F) ? CV_64F : CV_32F)); } float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt) { cv::Vec3f v1(n[0],n[1],0); cv::Vec3f v2(pt.x-a.x,pt.y-a.y,0); return v1.cross(v2)[2]; } bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle) { cv::Vec2f vec1(l1-pt); cv::Vec2f vec2(pt-l2); if(vec1.dot(vec2) < min_angle*cv::norm(vec1)*cv::norm(vec2)) return false; return true; } // returns how many tests fails out of 10 int testPointSymmetry(const cv::Mat &mat,cv::Point2f pt,float dist,float max_error) { cv::Rect image_rect(int(0.5*dist),int(0.5*dist),int(mat.cols-0.5*dist),int(mat.rows-0.5*dist)); cv::Size size(int(0.5*dist),int(0.5*dist)); int count = 0; cv::Mat patch1,patch2; cv::Point2f center1,center2; for (int angle_i = 0; angle_i < 10; angle_i++) { double angle = angle_i * (CV_PI * 0.1); cv::Point2f n(float(cos(angle)),float(-sin(angle))); center1 = pt+dist*n; if(!image_rect.contains(center1)) return false; center2 = pt-dist*n; if(!image_rect.contains(center2)) return false; cv::getRectSubPix(mat,size,center1,patch1); cv::getRectSubPix(mat,size,center2,patch2); if(fabs(cv::mean(patch1)[0]-cv::mean(patch2)[0]) > max_error) ++count; } return count; } inline float calcSubpixel(const float &x_l,const float &x,const float &x_r) { // prevent zero values if(x_l <= 0) return 0; if(x <= 0) return 0; if(x_r <= 0) return 0; const float l0 = float(std::log(x_l+1e-6)); const float l1 = float(std::log(x+1e-6)); const float l2 = float(std::log(x_r+1e-6)); float delta = l2-l1-l1+l0; if(!delta) // this happens if all values are identical return 0; delta = (l0-l2)/(delta+delta); return delta; } inline float calcSubPos(const float &x_l,const float &x,const float &x_r) { float val = 2.0F *(x_l-2.0F*x+x_r); if(val == 0.0F) return 0.0F; val = (x_l-x_r)/val; if(val > 1.0F) return 1.0F; if(val < -1.0F) return -1.0F; return val; } FastX::FastX(const Parameters ¶) { reconfigure(para); } void FastX::reconfigure(const Parameters ¶) { CV_Check(para.min_scale, para.min_scale >= 0 && para.min_scale <= para.max_scale, "invalid scale"); parameters = para; } // rotates the image around its center void FastX::rotate(float angle,cv::InputArray img,cv::Size size,cv::OutputArray out)const { if(angle == 0) { img.copyTo(out); return; } else { cv::Matx23d m = cv::getRotationMatrix2D(cv::Point2f(float(img.cols()*0.5),float(img.rows()*0.5)),float(angle/CV_PI*180),1); m(0,2) += 0.5*(size.width-img.cols()); m(1,2) += 0.5*(size.height-img.rows()); cv::warpAffine(img,out,m,size); } } void FastX::calcFeatureMap(const Mat &images,Mat& out)const { if(images.empty()) CV_Error(Error::StsBadArg,"no rotation images"); int type = images.type(), depth = CV_MAT_DEPTH(type); CV_CheckType(type,depth == CV_8U, "Only 8-bit grayscale or color images are supported"); if(!images.isContinuous()) CV_Error(Error::StsBadArg,"image must be continuous"); float signal,noise,rating; int count1; unsigned char val1,val2,val3; const unsigned char* wrap_around; const unsigned char* pend; const unsigned char* pimages = images.data; const int channels = images.channels(); if(channels < 4) CV_Error(Error::StsBadArg,"images must have at least four channels"); // for each pixel out = cv::Mat::zeros(images.rows,images.cols,CV_32FC1); const float *pout_end = reinterpret_cast(out.dataend); for(float *pout=out.ptr(0,0);pout != pout_end;++pout) { //reset values rating = 0.0; count1 = 0; noise = 255; signal = 0; //calc rating pend = pimages+channels; val1 = *(pend-1); // wrap around (last value) wrap_around = pimages++; // store for wrap around (first value) val2 = *wrap_around; // first value for(;pimages != pend;++pimages) { val3 = *pimages; if(val1 <= val2) { if(val3 < val2) // maxima { if(signal < val2) signal = val2; ++count1; } } else if(val1 > val2 && val3 >= val2) // minima { if(noise > val2) noise = val2; ++count1; } val1 = val2; val2 = val3; } // wrap around if(val1 <= val2) // maxima { if(*wrap_around < val2) { if(signal < val2) signal = val2; ++count1; } } else if(val1 > val2 && *wrap_around >= val2) // minima { if(noise > val2) noise = val2; ++count1; } // store rating if(count1 == parameters.branches) { rating = signal-noise; *pout = rating*rating; //store rating in the feature map } } } std::vector > FastX::calcAngles(const std::vector &rotated_images,std::vector &keypoints)const { // validate rotated_images if(rotated_images.empty()) CV_Error(Error::StsBadArg,"no rotated images"); std::vector::const_iterator iter = rotated_images.begin(); for(;iter != rotated_images.end();++iter) { if(iter->empty()) CV_Error(Error::StsBadArg,"empty rotated images"); if(iter->channels() < 4) CV_Error(Error::StsBadArg,"rotated images must have at least four channels"); } // assuming all elements of the same channel const int channels = rotated_images.front().channels(); const int channels_1 = channels-1; const float resolution = float(CV_PI/channels); const float scale = float(parameters.super_resolution)+1.0F; // for each keypoint std::vector > angles; angles.resize(keypoints.size()); parallel_for_(Range(0,(int)keypoints.size()),[&](const Range& range) { float angle; float val1,val2,val3,wrap_around; const unsigned char *pimages1,*pimages2,*pimages3,*pimages4; std::vector::iterator pt_iter = keypoints.begin()+range.start; std::vector::iterator pt_end = keypoints.begin()+range.end; for(int id=range.start ;pt_iter != pt_end;++pt_iter,++id) { int scale_id = pt_iter->octave - parameters.min_scale; if(scale_id>= int(rotated_images.size()) ||scale_id < 0) CV_Error(Error::StsBadArg,"no rotated image for requested keypoint octave"); const cv::Mat &s_rotated_images = rotated_images[scale_id]; float x2 = pt_iter->pt.x*scale; float y2 = pt_iter->pt.y*scale; int row = int(y2); int col = int(x2); x2 -= col; y2 -= row; float x1 = 1.0F-x2; float y1 = 1.0F-y2; float a = x1*y1; float b = x2*y1; float c = x1*y2; float d = x2*y2; pimages1 = s_rotated_images.ptr(row,col); pimages2 = s_rotated_images.ptr(row,col+1); pimages3 = s_rotated_images.ptr(row+1,col); pimages4 = s_rotated_images.ptr(row+1,col+1); std::vector &angles_i = angles[id]; //calc rating val1 = a**(pimages1+channels_1)+b**(pimages2+channels_1)+ c**(pimages3+channels_1)+d**(pimages4+channels_1); // wrap around (last value) wrap_around = a**(pimages1++)+b**(pimages2++)+c**(pimages3++)+d**(pimages4++); // first value val2 = wrap_around; // first value for(int i=0;i CV_PI) angle -= float(CV_PI); angles_i.push_back(angle); pt_iter->angle = 360.0F-angle*RAD2DEG; } } else if(val1 > val2 && val3 >= val2) { angle = float((calcSubPos(val1,val2,val3)+i)*resolution); if(angle < 0) angle += float(CV_PI); else if(angle > CV_PI) angle -= float(CV_PI); angles_i.push_back(-angle); pt_iter->angle = 360.0F-angle*RAD2DEG; } val1 = val2; val2 = val3; } // wrap around if(val1 <= val2) { if(wrap_around< val2) { angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution); if(angle < 0) angle += float(CV_PI); else if(angle > CV_PI) angle -= float(CV_PI); angles_i.push_back(angle); pt_iter->angle = 360.0F-angle*RAD2DEG; } } else if(val1 > val2 && wrap_around >= val2) { angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution); if(angle < 0) angle += float(CV_PI); else if(angle > CV_PI) angle -= float(CV_PI); angles_i.push_back(-angle); pt_iter->angle = 360.0F-angle*RAD2DEG; } } }); return angles; } void FastX::findKeyPoints(const std::vector &feature_maps, std::vector& keypoints,const Mat& _mask) const { //TODO check that all feature_maps have the same size int num_scales = parameters.max_scale-parameters.min_scale; CV_CheckGE(int(feature_maps.size()), num_scales, "missing feature maps"); if (!_mask.empty()) { CV_CheckTypeEQ(_mask.type(), CV_8UC1, "wrong mask type"); CV_CheckEQ(_mask.size(), feature_maps.front().size(),"wrong mask type or size"); } keypoints.clear(); cv::Mat mask; if(!_mask.empty()) mask = _mask; else mask = cv::Mat::ones(feature_maps.front().size(),CV_8UC1); int super_res = int(parameters.super_resolution); int super_scale = super_res+1; float super_comp = 0.25F*super_res; // for each scale float strength = parameters.strength; std::vector windows; cv::Point pt,pt2; double min,max; cv::Mat src; for(int scale=parameters.max_scale;scale>=parameters.min_scale;--scale) { int window_size = (1 << (scale + super_res)) + 1; float window_size2 = 0.5F*window_size; float window_size4 = 0.25F*window_size; int window_size2i = cvRound(window_size2); const cv::Mat &feature_map = feature_maps[scale-parameters.min_scale]; int y = ((feature_map.rows)/window_size)-2; int x = ((feature_map.cols)/window_size)-2; for(int row=1;row(pos.y,pos.x) == 0) continue; Rect rect2(int(pos.x-window_size2),int(pos.y-window_size2),window_size,window_size); src = feature_map(rect2); cv::minMaxLoc(src,NULL,NULL,NULL,&pt2); if(pos.x == pt2.x+rect2.x && pos.y == pt2.y+rect2.y) { // the point is the best one on the current scale // check all larger scales if there is a stronger one double max2; int scale2= scale-1; //parameters.min_scale; for(;scale2>=parameters.min_scale;--scale2) { cv::minMaxLoc(feature_maps[scale2-parameters.min_scale](rect),NULL,&max2,NULL,NULL); if(max2 > max) break; } if(scale2(pos.y,pos.x-1), feature_map.at(pos.y,pos.x), feature_map.at(pos.y,pos.x+1))); float sub_y = float(calcSubpixel(feature_map.at(pos.y-1,pos.x), feature_map.at(pos.y,pos.x), feature_map.at(pos.y+1,pos.x))); cv::KeyPoint kpt(sub_x+pos.x,sub_y+pos.y,float(window_size),0.F,float(max),scale); int x2 = std::max(0,int(kpt.pt.x-window_size4)); int y2 = std::max(0,int(kpt.pt.y-window_size4)); int w = std::min(int(mask.cols-x2),window_size2i); int h = std::min(int(mask.rows-y2),window_size2i); mask(cv::Rect(x2,y2,w,h)) = 0.0; if(super_scale != 1) { kpt.pt.x /= super_scale; kpt.pt.y /= super_scale; kpt.pt.x -= super_comp; kpt.pt.y -= super_comp; kpt.size /= super_scale; } keypoints.push_back(kpt); } } } } } } void FastX::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector& keypoints, cv::OutputArray _descriptors,bool useProvidedKeyPoints) { useProvidedKeyPoints = false; detectImpl(image.getMat(),keypoints,mask.getMat()); if(!_descriptors.needed()) return; // generate descriptors based on their position _descriptors.create(int(keypoints.size()),2,CV_32FC1); cv::Mat descriptors = _descriptors.getMat(); std::vector::const_iterator iter = keypoints.begin(); for(int row=0;iter != keypoints.end();++iter,++row) { descriptors.at(row,0) = iter->pt.x; descriptors.at(row,1) = iter->pt.y; } if(!useProvidedKeyPoints) // suppress compiler warning return; return; } void FastX::detectImpl(const cv::Mat& _gray_image, std::vector &rotated_images, std::vector &feature_maps, const cv::Mat &_mask)const { if(!_mask.empty()) CV_Error(Error::StsBadSize, "Mask is not supported"); CV_CheckTypeEQ(_gray_image.type(), CV_8UC1, "Unsupported image type"); // up-sample if needed cv::UMat gray_image; const int super_res = int(parameters.super_resolution); if(super_res) cv::resize(_gray_image,gray_image,cv::Size(),2,2); else _gray_image.copyTo(gray_image); //for each scale const int num_scales = parameters.max_scale-parameters.min_scale+1; const int diag = int(sqrt(gray_image.rows*gray_image.rows+gray_image.cols*gray_image.cols)); const cv::Size size(diag,diag); const int num = int(0.5001*CV_PI/parameters.resolution); rotated_images.resize(num_scales); feature_maps.resize(num_scales); parallel_for_(Range(parameters.min_scale,parameters.max_scale+1),[&](const Range& range){ for(int scale=range.start;scale < range.end;++scale) { // calc images // for each angle step int scale_id = scale-parameters.min_scale; int scale_size = int(pow(2.0,scale+1+super_res)); int scale_size2 = int((scale_size/7)*2+1); std::vector images; images.resize(2*num); cv::UMat rotated,filtered_h,filtered_v; cv::boxFilter(gray_image,images[0],-1,cv::Size(scale_size,scale_size2)); cv::boxFilter(gray_image,images[num],-1,cv::Size(scale_size2,scale_size)); for(int i=1;i& keypoints,std::vector &feature_maps,const cv::Mat &mask)const { std::vector rotated_images; detectImpl(image,rotated_images,feature_maps,mask); findKeyPoints(feature_maps,keypoints,mask); } void FastX::detectImpl(InputArray image, std::vector& keypoints, InputArray mask)const { std::vector feature_maps; detectImpl(image.getMat(),keypoints,feature_maps,mask.getMat()); } void FastX::detectImpl(const Mat& src, std::vector& keypoints, const Mat& mask)const { std::vector feature_maps; detectImpl(src,keypoints,feature_maps,mask); } Ellipse::Ellipse(): angle(0), cosf(0), sinf(0) { } Ellipse::Ellipse(const cv::Point2f &_center, const cv::Size2f &_axes, float _angle): center(_center), axes(_axes), angle(_angle), cosf(cos(-_angle)), sinf(sin(-_angle)) { } const cv::Size2f &Ellipse::getAxes()const { return axes; } cv::Point2f Ellipse::getCenter()const { return center; } void Ellipse::draw(cv::InputOutputArray img,const cv::Scalar &color)const { cv::ellipse(img,center,axes,360-angle/CV_PI*180,0,360,color); } bool Ellipse::contains(const cv::Point2f &pt)const { cv::Point2f ptc = pt-center; float x = cosf*ptc.x+sinf*ptc.y; float y = -sinf*ptc.x+cosf*ptc.y; if(x*x/(axes.width*axes.width)+y*y/(axes.height*axes.height) <= 1.0) return true; return false; } // returns false if the angle from the line pt1-pt2 to the line pt3-pt4 is negative static bool checkOrientation(const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3,const cv::Point2f &pt4) { cv::Point3f p1(pt2.x-pt1.x,pt2.y-pt1.y,0); cv::Point3f p2(pt4.x-pt3.x,pt4.y-pt3.y,0); return p1.cross(p2).z > 0; } static bool sortKeyPoint(const cv::KeyPoint &pt1,const cv::KeyPoint &pt2) { // used as comparison function for partial sort // the keypoints with the best score should be first return pt1.response > pt2.response; } cv::Mat Chessboard::getObjectPoints(const cv::Size &pattern_size,float cell_size) { cv::Mat result(pattern_size.width*pattern_size.height,1,CV_32FC3); for(int row=0;row < pattern_size.height;++row) { for(int col=0;col< pattern_size.width;++col) { cv::Point3f &pt = *result.ptr(row*pattern_size.width+col); pt.x = cell_size*col; pt.y = cell_size*row; pt.z = 0; } } return result; } bool Chessboard::Board::Cell::isInside(const cv::Point2f &pt)const { if(empty()) return false; float l1 = (pt.x-top_left->x)*(bottom_left->y-top_left->y) - (bottom_left->x-top_left->x)*(pt.y-top_left->y); float l2 = (pt.x-top_right->x)*(top_left->y-top_right->y) - (top_left->x-top_right->x)*(pt.y-top_right->y); float l3 = (pt.x-bottom_left->x)*(top_right->y-bottom_left->y) - (top_right->x-bottom_left->x)*(pt.y-bottom_left->y); if((l1>0 && l2>0 && l3>0) || (l1<0 && l2<0 && l3<0)) return true; l1 = (pt.x-top_left->x)*(bottom_right->y-top_left->y) - (bottom_right->x-top_left->x)*(pt.y-top_left->y); l2 = (pt.x-top_right->x)*(top_left->y-top_right->y) - (top_left->x-top_right->x)*(pt.y-top_right->y); l3 = (pt.x-bottom_right->x)*(top_right->y-bottom_right->y) - (top_right->x-bottom_right->x)*(pt.y-bottom_right->y); return (l1>0 && l2>0 && l3>0) || (l1<0 && l2<0 && l3<0); } bool Chessboard::Board::Cell::empty()const { // check if one of its corners has NaN if(top_left->x != top_left->x || top_left->y != top_left->y) return true; if(top_right->x != top_right->x || top_right->y != top_right->y) return true; if(bottom_right->x != bottom_right->x || bottom_right->y != bottom_right->y) return true; if(bottom_left->x != bottom_left->x || bottom_left->y != bottom_left->y) return true; return false; } int Chessboard::Board::Cell::getRow()const { int row = 0; Cell const* temp = this; for(;temp->top;temp=temp->top,++row); return row; } cv::Point2f Chessboard::Board::Cell::getCenter()const { if(empty()) CV_Error(Error::StsBadArg,"Cell is empty"); cv::Point2f center = *top_left+*top_right+*bottom_left+*bottom_right; center.x /=4; center.y /=4; return center; } int Chessboard::Board::Cell::getCol()const { int col = 0; Cell const* temp = this; for(;temp->left;temp=temp->left,++col); return col; } Chessboard::Board::Cell::Cell() : top_left(NULL), top_right(NULL), bottom_right(NULL), bottom_left(NULL), left(NULL), top(NULL), right(NULL), bottom(NULL),black(false),marker(false) {} Chessboard::Board::PointIter::PointIter(Cell *_cell,CornerIndex _corner_index): corner_index(_corner_index), cell(_cell) { } Chessboard::Board::PointIter::PointIter(const PointIter &other) { this->operator=(other); } void Chessboard::Board::PointIter::operator=(const PointIter &other) { corner_index = other.corner_index; cell = other.cell; } Chessboard::Board::Cell* Chessboard::Board::PointIter::getCell() { return cell; } bool Chessboard::Board::PointIter::valid()const { return cell != NULL; } bool Chessboard::Board::PointIter::isNaN()const { const cv::Point2f *pt = operator*(); if(pt->x != pt->x || pt->y != pt->y) // NaN check return true; return false; } bool Chessboard::Board::PointIter::checkCorner()const { if(!cell->empty()) return true; // test all other cells switch(corner_index) { case BOTTOM_LEFT: if(cell->left) { if(!cell->left->empty()) return true; if(cell->left->bottom && !cell->left->bottom->empty()) return true; } if(cell->bottom) { if(!cell->bottom->empty()) return true; if(cell->bottom->left && !cell->bottom->left->empty()) return true; } break; case TOP_LEFT: if(cell->left) { if(!cell->left->empty()) return true; if(cell->left->top && !cell->left->top->empty()) return true; } if(cell->top) { if(!cell->top->empty()) return true; if(cell->top->left && !cell->top->left->empty()) return true; } break; case TOP_RIGHT: if(cell->right) { if(!cell->right->empty()) return true; if(cell->right->top && !cell->right->top->empty()) return true; } if(cell->top) { if(!cell->top->empty()) return true; if(cell->top->right && !cell->top->right->empty()) return true; } break; case BOTTOM_RIGHT: if(cell->right) { if(!cell->right->empty()) return true; if(cell->right->bottom && !cell->right->bottom->empty()) return true; } if(cell->bottom) { if(!cell->bottom->empty()) return true; if(cell->bottom->right && !cell->bottom->right->empty()) return true; } break; default: CV_Assert(false); } return false; } bool Chessboard::Board::PointIter::left(bool check_empty) { switch(corner_index) { case BOTTOM_LEFT: if(cell->left && (!check_empty || !cell->left->empty())) cell = cell->left; else if(check_empty && cell->bottom && cell->bottom->left && !cell->bottom->left->empty()) { cell = cell->bottom->left; corner_index = TOP_LEFT; } else return false; break; case TOP_LEFT: if(cell->left && (!check_empty || !cell->left->empty())) cell = cell->left; else if(check_empty && cell->top && cell->top->left && !cell->top->left->empty()) { cell = cell->top->left; corner_index = BOTTOM_LEFT; } else return false; break; case TOP_RIGHT: corner_index = TOP_LEFT; break; case BOTTOM_RIGHT: corner_index = BOTTOM_LEFT; break; default: CV_Assert(false); } return true; } bool Chessboard::Board::PointIter::top(bool check_empty) { switch(corner_index) { case TOP_RIGHT: if(cell->top && (!check_empty || !cell->top->empty())) cell = cell->top; else if(check_empty && cell->right && cell->right->top&& !cell->right->top->empty()) { cell = cell->right->top; corner_index = TOP_LEFT; } else return false; break; case TOP_LEFT: if(cell->top && (!check_empty || !cell->top->empty())) cell = cell->top; else if(check_empty && cell->left && cell->left->top&& !cell->left->top->empty()) { cell = cell->left->top; corner_index = TOP_RIGHT; } else return false; break; case BOTTOM_LEFT: corner_index = TOP_LEFT; break; case BOTTOM_RIGHT: corner_index = TOP_RIGHT; break; default: CV_Assert(false); } return true; } bool Chessboard::Board::PointIter::right(bool check_empty) { switch(corner_index) { case TOP_RIGHT: if(cell->right && (!check_empty || !cell->right->empty())) cell = cell->right; else if(check_empty && cell->top && cell->top->right && !cell->top->right->empty()) { cell = cell->top->right; corner_index = BOTTOM_RIGHT; } else return false; break; case BOTTOM_RIGHT: if(cell->right && (!check_empty || !cell->right->empty())) cell = cell->right; else if(check_empty && cell->bottom && cell->bottom->right && !cell->bottom->right->empty()) { cell = cell->bottom->right; corner_index = TOP_RIGHT; } else return false; break; case TOP_LEFT: corner_index = TOP_RIGHT; break; case BOTTOM_LEFT: corner_index = BOTTOM_RIGHT; break; default: CV_Assert(false); } return true; } bool Chessboard::Board::PointIter::bottom(bool check_empty) { switch(corner_index) { case BOTTOM_LEFT: if(cell->bottom && (!check_empty || !cell->bottom->empty())) cell = cell->bottom; else if(check_empty && cell->left && cell->left->bottom && !cell->left->bottom->empty()) { cell = cell->left->bottom; corner_index = BOTTOM_RIGHT; } else return false; break; case BOTTOM_RIGHT: if(cell->bottom && (!check_empty || !cell->bottom->empty())) cell = cell->bottom; else if(check_empty && cell->right && cell->right->bottom && !cell->right->bottom->empty()) { cell = cell->right->bottom; corner_index = BOTTOM_LEFT; } else return false; break; case TOP_LEFT: corner_index = BOTTOM_LEFT; break; case TOP_RIGHT: corner_index = BOTTOM_RIGHT; break; default: CV_Assert(false); } return true; } const cv::Point2f* Chessboard::Board::PointIter::operator*()const { switch(corner_index) { case TOP_LEFT: return cell->top_left; case TOP_RIGHT: return cell->top_right; case BOTTOM_RIGHT: return cell->bottom_right; case BOTTOM_LEFT: return cell->bottom_left; } CV_Assert(false); } const cv::Point2f* Chessboard::Board::PointIter::operator->()const { return operator*(); } cv::Point2f* Chessboard::Board::PointIter::operator*() { const cv::Point2f *pt = const_cast(this)->operator*(); return const_cast(pt); } cv::Point2f* Chessboard::Board::PointIter::operator->() { return operator*(); } Chessboard::Board::Board(float _white_angle,float _black_angle): top_left(NULL), rows(0), cols(0), white_angle(_white_angle), black_angle(_black_angle) { } Chessboard::Board::Board(const Chessboard::Board &other): top_left(NULL), rows(0), cols(0) { *this = other; } Chessboard::Board::Board(const cv::Size &size, const std::vector &points,float _white_angle,float _black_angle): top_left(NULL), rows(0), cols(0), white_angle(_white_angle), black_angle(_black_angle) { if(size.width*size.height != int(points.size())) CV_Error(Error::StsBadArg,"size mismatch"); if(size.width < 3 || size.height < 3) CV_Error(Error::StsBadArg,"at least 3 rows and cols are needed to initialize the board"); // init board with 3x3 // TODO write function speeding up the copying cv::Mat data = cv::Mat(points).reshape(2,size.height); cv::Mat temp; data(cv::Rect(0,0,3,3)).copyTo(temp); std::vector ipoints = temp.reshape(2,1); if(!init(ipoints)) return; // add all cols if more than 3 for(int col=3 ; col< data.cols;++col) { data(cv::Rect(col,0,1,3)).copyTo(temp); ipoints = temp.reshape(2,1); addColumnRight(ipoints); } // add all rows if more than 3 for(int row=3; row < data.rows;++row) { data(cv::Rect(0,row,cols,1)).copyTo(temp); ipoints = temp.reshape(2,1); addRowBottom(ipoints); } } Chessboard::Board::~Board() { clear(); } void Chessboard::Board::setAngles(float white, float black) { white_angle = white; black_angle = black; } float Chessboard::Board::getAngle()const { if(isEmpty()) CV_Error(Error::StsBadArg,"Board is empty"); if(colCount() < 3) CV_Error(Error::StsBadArg,"Board is too small"); cv::Point2f delta = *(top_left->right->top_right)-*(top_left->top_left); cv::Point3f pt(delta.x,delta.y,0); float val; if(fabs(pt.x) > fabs(pt.y)) { cv::Point3f ptx(1,0,0); val = float(ptx.dot(pt)/cv::norm(pt)); if(val < 0) val = -acos(val); else val = acos(val); } else { cv::Point3f ptx(0,1,0); val = float(ptx.dot(pt)/cv::norm(pt)); if(val < 0) val = float(-acos(val)+CV_PI/2); else val = float(acos(val)+CV_PI/2); } return val; } bool Chessboard::Board::isHorizontal()const { double angle = getAngle(); if((angle < 0.25*CV_PI && angle > -0.25*CV_PI) || angle > 0.75*CV_PI || angle < -0.75*CV_PI) return true; return false; } cv::Mat Chessboard::Board::getObjectPoints(float cell_size)const { cv::Mat points = Chessboard::getObjectPoints(getSize(),cell_size); // check for any offset due to a found marker for(auto &&cell : cells) { if(cell->marker && !cell->black) { // apply offset cv::Point3f offset(cell->getCol()*cell_size,cell->getRow()*cell_size,0); for(int i =0;i < points.rows;++i) points.at(i) -= offset; break; } } return points; } std::vector Chessboard::Board::getCellCenters()const { int icols = int(colCount()); int irows = int(rowCount()); if(icols < 3 || irows < 3) CV_Error(Error::StsBadArg,"Chessboard must be at least consist of 3 rows and cols to calculate the cell centers"); std::vector points; cv::Matx33d H(estimateHomography(DUMMY_FIELD_SIZE)); cv::Vec3d pt1,pt2; pt1[2] = 1; for(int row = 0;row < irows;++row) { pt1[1] = (0.5+row)*DUMMY_FIELD_SIZE; for(int col= 0;col< icols;++col) { pt1[0] = (0.5+col)*DUMMY_FIELD_SIZE; pt2 = H*pt1; points.push_back(cv::Point2f(float(pt2[0]/pt2[2]),float(pt2[1]/pt2[2]))); } } return points; } std::vector Chessboard::Board::getCells(float shrink_factor,bool bwhite,bool bblack) const { std::vector result; int icols = int(colCount()); int irows = int(rowCount()); if(icols < 3 || irows < 3) return result; for(int row=0;rowblack) continue; if(!bblack && cell->black) continue; cv::Mat points = cv::Mat(4,1,CV_32FC2); points.at(0) = *cell->top_left; points.at(1) = *cell->top_right; points.at(2) = *cell->bottom_right; points.at(3) = *cell->bottom_left; if(shrink_factor != 1) { cv::Point2f center = *cell->top_left+*cell->top_right+*cell->bottom_left+*cell->bottom_right; center.x /=4; center.y /=4; for(int i=0;i<4;++i) { auto &pt = points.at(i); pt = center+(pt-center)*shrink_factor; } } result.push_back(points); } } return result; } cv::Mat Chessboard::Board::warpImage(cv::InputArray image)const { cv::Mat H = estimateHomography(); cv::Mat mat; cv::Size size = getSize(); size.width = (size.width+1)*DUMMY_FIELD_SIZE; size.height= (size.height+1)*DUMMY_FIELD_SIZE; cv::warpPerspective(image,mat,H.inv(),size); return mat; } void Chessboard::Board::draw(cv::InputArray m,cv::OutputArray out,cv::InputArray _H)const { cv::Mat H = _H.getMat(); if(H.empty()) H = estimateHomography(); cv::Mat image = m.getMat().clone(); if(image.type() == CV_32FC1) { double maxVal,minVal; cv::minMaxLoc(image, &minVal, &maxVal); double scale = 255.0/(maxVal-minVal); image.convertTo(image,CV_8UC1,scale,-scale*minVal); cv::applyColorMap(image,image,cv::COLORMAP_JET); } // draw all points and search areas std::vector points = getCorners(); std::vector::const_iterator iter1 = points.begin(); int icols = int(colCount()); int irows = int(rowCount()); int count=0; for(int row=0;rowx != iter1->x) // NaN check { // draw search ellipse Ellipse ellipse = estimateSearchArea(H,row,col,0.4F); ellipse.draw(image,cv::Scalar::all(200)); } else { cv::circle(image,*iter1,4,cv::Scalar(count*20,count*20,count*20,255),-1); ++count; } } } // draw field colors for(int row=0;rowgetCenter(); int size = 4; if(row==0&&col==0) size=8; if(row==0&&col==1) size=7; if(cell->marker) { if(cell->black) cv::circle(image,center,2,cv::Scalar::all(0),-1); else { cv::circle(image,center,2,cv::Scalar::all(255),-1); // draw coordinate if(col+1 < icols) { const Cell *cell2 = getCell(row,col+1); cv::Point2f center2 = cell2->getCenter(); cv::line(image,center,center2,cv::Scalar::all(127),2); } if(row+1 < irows) { const Cell *cell2 = getCell(row+1,col); cv::Point2f center2 = cell2->getCenter(); cv::line(image,center,center2,cv::Scalar::all(127),2); } } } else { if(cell->black) cv::circle(image,center,size,cv::Scalar::all(255),-1); else cv::circle(image,center,size,cv::Scalar(0,0,10,255),-1); } } } out.create(image.rows,image.cols,image.type()); image.copyTo(out.getMat()); } bool Chessboard::Board::estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const { cv::Mat K = _K.getMat(); CV_CheckTypeEQ(K.type(), CV_64FC1, "wrong K type"); CV_CheckEQ(K.size(), Size(3, 3), "wrong K size"); if(isEmpty()) return false; int icols = int(colCount()); int irows = int(rowCount()); float field_width = real_size.width/(icols+1); float field_height= real_size.height/(irows+1); // the center of the board is placed at (0,0,1) int offset_x = int(-(icols-1)*field_width*0.5F); int offset_y = int(-(irows-1)*field_width*0.5F); std::vector image_points; std::vector object_points; std::vector corners_temp = getCorners(true); std::vector::const_iterator iter = corners_temp.begin(); for(int row = 0;row < irows;++row) { for(int col= 0;colx != iter->x) // NaN check continue; image_points.push_back(*iter); object_points.push_back(cv::Point3f(field_width*col-offset_x,field_height*row-offset_y,1.0)); } } return cv::solvePnP(object_points,image_points,K,cv::Mat(),rvec,tvec);//,cv::SOLVEPNP_P3P); } float Chessboard::Board::getBlackAngle()const { return black_angle; } float Chessboard::Board::getWhiteAngle()const { return white_angle; } void Chessboard::Board::swap(Chessboard::Board &other) { corners.swap(other.corners); cells.swap(other.cells); std::swap(rows,other.rows); std::swap(cols,other.cols); std::swap(top_left,other.top_left); std::swap(white_angle,other.white_angle); std::swap(black_angle,other.black_angle); } Chessboard::Board& Chessboard::Board::operator=(const Chessboard::Board &other) { if(this == &other) return *this; clear(); rows = other.rows; cols = other.cols; white_angle = other.white_angle; black_angle = other.black_angle; cells.reserve(other.cells.size()); corners.reserve(other.corners.size()); //copy all points and generate mapping std::map point_point_mapping; point_point_mapping[NULL] = NULL; std::vector::const_iterator iter = other.corners.begin(); for(;iter != other.corners.end();++iter) { cv::Point2f *pt = new cv::Point2f(**iter); point_point_mapping[*iter] = pt; corners.push_back(pt); } //copy all cells using mapping std::map cell_cell_mapping; std::vector::const_iterator iter2 = other.cells.begin(); for(;iter2 != other.cells.end();++iter2) { Cell *cell = new Cell; cell->top_left = point_point_mapping[(*iter2)->top_left]; cell->top_right= point_point_mapping[(*iter2)->top_right]; cell->bottom_right= point_point_mapping[(*iter2)->bottom_right]; cell->bottom_left = point_point_mapping[(*iter2)->bottom_left]; cell->black = (*iter2)->black; cell->marker = (*iter2)->marker; cell_cell_mapping[*iter2] = cell; cells.push_back(cell); } //set cell connections using mapping cell_cell_mapping[NULL] = NULL; iter2 = other.cells.begin(); std::vector::iterator iter3 = cells.begin(); for(;iter2 != other.cells.end();++iter2,++iter3) { (*iter3)->left = cell_cell_mapping[(*iter2)->left]; (*iter3)->top = cell_cell_mapping[(*iter2)->top]; (*iter3)->right = cell_cell_mapping[(*iter2)->right]; (*iter3)->bottom= cell_cell_mapping[(*iter2)->bottom]; } top_left = cell_cell_mapping[other.top_left]; return *this; } bool Chessboard::Board::normalizeMarkerOrientation() { // use row by row fashion as cells must not be arranged correctly Cell *pcell = NULL; int trows = int(rowCount()); int tcols = int(colCount()); for(int row=0;row != trows && !pcell;++row) { for(int col=0;col != tcols;++col) { Cell* current_cell = getCell(row,col); if(!current_cell->marker || !current_cell->right || !current_cell->right->marker) continue; if(current_cell->black) { if(current_cell->right->top && current_cell->right->top->marker) { rotateLeft(); rotateLeft(); pcell = current_cell->right; break; } if(current_cell->right->bottom && current_cell->right->bottom->marker) { rotateLeft(); pcell = current_cell->right; break; } } else { if(current_cell->top && current_cell->top->marker) { rotateRight(); pcell = current_cell; break; } if(current_cell->bottom && current_cell->bottom->marker) { // correct orientation pcell = current_cell; break; } } } } if(pcell) { //check for ambiguity if(rowCount()-pcell->bottom->getRow() > 2) { // std::cout << "FIX board " << pcell->bottom->getRow() << " " << rowCount(); flipVertical(); rotateRight(); } return true; } return false; } void Chessboard::Board::normalizeOrientation(bool bblack) { // fix ordering cv::Point2f y = getCorner(0,1)-getCorner(2,1); cv::Point2f x = getCorner(1,2)-getCorner(1,0); cv::Point3f y3d(y.x,y.y,0); cv::Point3f x3d(x.x,x.y,0); if(x3d.cross(y3d).z > 0) flipHorizontal(); //normalize orientation so that first element is black or white const Cell* cell = getCell(0,0); if(cell->black != bblack && colCount()%2 != 0) rotateLeft(); else if(cell->black != bblack && rowCount()%2 != 0) { rotateLeft(); rotateLeft(); } //find closest point to top left image corner //in case of symmetric checkerboard if(colCount() == rowCount()) { PointIter iter_top_right(top_left,TOP_RIGHT); while(iter_top_right.right()); PointIter iter_bottom_right(iter_top_right); while(iter_bottom_right.bottom()); PointIter iter_bottom_left(top_left,BOTTOM_LEFT); while(iter_bottom_left.bottom()); // check if one of the cell is empty and do not normalize if so if(top_left->empty() || iter_top_right.getCell()->empty() || iter_bottom_left.getCell()->empty() || iter_bottom_right.getCell()->empty()) return; float d1 = pow(top_left->top_left->x,2)+pow(top_left->top_left->y,2); float d2 = pow((*iter_top_right)->x,2)+pow((*iter_top_right)->y,2); float d3 = pow((*iter_bottom_left)->x,2)+pow((*iter_bottom_left)->y,2); float d4 = pow((*iter_bottom_right)->x,2)+pow((*iter_bottom_right)->y,2); if(d2 <= d1 && d2 <= d3 && d2 <= d4) // top left is top right rotateLeft(); else if(d3 <= d1 && d3 <= d2 && d3 <= d4) // top left is bottom left rotateRight(); else if(d4 <= d1 && d4 <= d2 && d4 <= d3) // top left is bottom right { rotateLeft(); rotateLeft(); } } } void Chessboard::Board::rotateRight() { PointIter p_iter(top_left,BOTTOM_LEFT); while(p_iter.bottom()); std::vector::iterator iter = cells.begin(); for(;iter != cells.end();++iter) { Cell *temp = (*iter)->bottom; (*iter)->bottom = (*iter)->right; (*iter)->right= (*iter)->top; (*iter)->top= (*iter)->left; (*iter)->left = temp; cv::Point2f *ptemp = (*iter)->bottom_left; (*iter)->bottom_left= (*iter)->bottom_right; (*iter)->bottom_right= (*iter)->top_right; (*iter)->top_right= (*iter)->top_left; (*iter)->top_left= ptemp; } int temp = rows; rows = cols; cols = temp; top_left = p_iter.getCell(); } void Chessboard::Board::rotateLeft() { PointIter p_iter(top_left,TOP_RIGHT); while(p_iter.right()); std::vector::iterator iter = cells.begin(); for(;iter != cells.end();++iter) { Cell *temp = (*iter)->top; (*iter)->top = (*iter)->right; (*iter)->right= (*iter)->bottom; (*iter)->bottom= (*iter)->left; (*iter)->left = temp; cv::Point2f *ptemp = (*iter)->top_left; (*iter)->top_left = (*iter)->top_right; (*iter)->top_right= (*iter)->bottom_right; (*iter)->bottom_right = (*iter)->bottom_left; (*iter)->bottom_left = ptemp; } int temp = rows; rows = cols; cols = temp; top_left = p_iter.getCell(); } void Chessboard::Board::flipHorizontal() { PointIter p_iter(top_left,TOP_RIGHT); while(p_iter.right()); std::vector::iterator iter = cells.begin(); for(;iter != cells.end();++iter) { Cell *temp = (*iter)->right; (*iter)->right= (*iter)->left; (*iter)->left = temp; cv::Point2f *ptemp = (*iter)->top_left; (*iter)->top_left = (*iter)->top_right; (*iter)->top_right = ptemp; ptemp = (*iter)->bottom_left; (*iter)->bottom_left = (*iter)->bottom_right; (*iter)->bottom_right = ptemp; } top_left = p_iter.getCell(); } void Chessboard::Board::flipVertical() { PointIter p_iter(top_left,BOTTOM_LEFT); while(p_iter.bottom()); std::vector::iterator iter = cells.begin(); for(;iter != cells.end();++iter) { Cell *temp = (*iter)->top; (*iter)->top= (*iter)->bottom; (*iter)->bottom = temp; cv::Point2f *ptemp = (*iter)->top_left; (*iter)->top_left = (*iter)->bottom_left; (*iter)->bottom_left = ptemp; ptemp = (*iter)->top_right; (*iter)->top_right = (*iter)->bottom_right; (*iter)->bottom_right = ptemp; } top_left = p_iter.getCell(); } // returns the best found score // if NaN is returned for a point no point at all was found // if 0 is returned the point lies outside of the ellipse float Chessboard::Board::findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &point) { // flann data type enriched with angles (third column) CV_CheckType(data.type(), CV_32FC1, "type of flann data is not supported"); CV_CheckEQ(data.cols, 4, "4-cols flann data is expected"); std::vector query,dists; std::vector indices; query.resize(2); point = ellipse.getCenter(); query[0] = point.x; query[1] = point.y; index.knnSearch(query,indices,dists,4,cv::flann::SearchParams(64)); std::vector::const_iterator iter = indices.begin(); float best_score = -std::numeric_limits::max(); point.x = std::numeric_limits::quiet_NaN(); point.y = std::numeric_limits::quiet_NaN(); for(;iter != indices.end();++iter) { const float *val = data.ptr(*iter); const float &response = *(val+3); if(response < best_score) continue; const float &a0 = *(val+2); float a1 = std::fabs(a0-white_angle); float a2 = std::fabs(a0-black_angle); if(a1 > CV_PI*0.5) a1 = std::fabs(float(a1-CV_PI)); if(a2> CV_PI*0.5) a2 = std::fabs(float(a2-CV_PI)); if(a1 < MAX_ANGLE || a2 < MAX_ANGLE ) { cv::Point2f pt(val[0], val[1]); if(point.x != point.x) // NaN check point = pt; if(best_score < response && ellipse.contains(pt)) { best_score = response; point = pt; } } } if(best_score == -std::numeric_limits::max()) return 0; else return best_score; } void Chessboard::Board::clear() { top_left = NULL; rows = 0; cols = 0; std::vector::iterator iter = cells.begin(); for(;iter != cells.end();++iter) delete *iter; cells.clear(); std::vector::iterator iter2 = corners.begin(); for(;iter2 != corners.end();++iter2) delete *iter2; corners.clear(); } // p0 p1 p2 // p3 p4 p5 // p6 p7 p8 bool Chessboard::Board::init(const std::vector points) { clear(); if(points.size() != 9) CV_Error(Error::StsBadArg,"exact nine points are expected to initialize the board"); // generate cells corners.resize(9); for(int i=0;i < 9;++i) corners[i] = new cv::Point2f(points[i]); cells.resize(4); for(int i=0;i<4;++i) cells[i] = new Cell(); //cell 0 cells[0]->top_left = corners[0]; cells[0]->top_right = corners[1]; cells[0]->bottom_right = corners[4]; cells[0]->bottom_left = corners[3]; cells[0]->right = cells[1]; cells[0]->bottom = cells[2]; //cell 1 cells[1]->top_left = corners[1]; cells[1]->top_right = corners[2]; cells[1]->bottom_right = corners[5]; cells[1]->bottom_left = corners[4]; cells[1]->left = cells[0]; cells[1]->bottom = cells[3]; //cell 2 cells[2]->top_left = corners[3]; cells[2]->top_right = corners[4]; cells[2]->bottom_right = corners[7]; cells[2]->bottom_left = corners[6]; cells[2]->top = cells[0]; cells[2]->right = cells[3]; //cell 3 cells[3]->top_left = corners[4]; cells[3]->top_right = corners[5]; cells[3]->bottom_right = corners[8]; cells[3]->bottom_left = corners[7]; cells[3]->top = cells[1]; cells[3]->left= cells[2]; top_left = cells.front(); rows = 3; cols = 3; // set initial cell colors Point2f pt1 = *(cells[0]->top_right)-*(cells[0]->bottom_left); pt1 /= cv::norm(pt1); cv::Point2f pt2(cos(white_angle),-sin(white_angle)); cv::Point2f pt3(cos(black_angle),-sin(black_angle)); if(fabs(pt1.dot(pt2)) < fabs(pt1.dot(pt3))) { cells[0]->black = false; cells[1]->black = true; cells[2]->black = true; cells[3]->black = false; } else { cells[0]->black = true; cells[1]->black = false; cells[2]->black = false; cells[3]->black = true; } return true; } //TODO magic number bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, cv::Point2f &p3) { // use cross ration to find new point if(p0 == p1 || p0 == p2 || p1 == p2) return false; cv::Point2f p01 = p1-p0; cv::Point2f p12 = p2-p1; float a = float(cv::norm(p01)); float b = float(cv::norm(p12)); float t = (0.75F*a-0.25F*b); if(t <= 0) return false; float c = 0.25F*b*(a+b)/t; if(c < 0.1F) return false; p01 = p01/a; p12 = p12/b; // check angle between p01 and p12 < 25° if(p01.dot(p12) < 0.9) return false; // calc mean // p12 = (p01+p12)*0.5; // p3 = p2+p12*c; p3 = p2+p12*c; // compensate radial distortion by fitting polynom std::vector x,y; x.resize(3,0); y.resize(3,0); x[1] = b; x[2] = b+a; y[2] = calcSignedDistance(-p12,p2,p0); cv::Mat dst; polyfit(cv::Mat(x),cv::Mat(y),dst,2); double d = dst.at(0)-dst.at(1)*c+dst.at(2)*c*c; cv::Vec3f v1(p12.x,p12.y,0); cv::Vec3f v2(0,0,1); cv::Vec3f v3 = v1.cross(v2); cv::Point2f n2(v3[0],v3[1]); p3 += d*n2; return true; } bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, const cv::Point2f &p3, cv::Point2f &p4) { // use 1D homography to find fith point minimizing square error if(p0 == p1 || p0 == p2 || p0 == p3 || p1 == p2 || p1 == p3 || p2 == p3 ) return false; static const cv::Mat src = (cv::Mat_(1,4) << 0,10,20,30); cv::Point2f p01 = p1-p0; cv::Point2f p02 = p2-p0; cv::Point2f p03 = p3-p0; float a = float(cv::norm(p01)); float b = float(cv::norm(p02)); float c = float(cv::norm(p03)); cv::Mat dst = (cv::Mat_(1,4) << 0,a,b,c); cv::Mat h = findHomography1D(src,dst); float d = float((h.at(0,0)*40+h.at(0,1))/(h.at(1,0)*40+h.at(1,1))); cv::Point2f p12 = p2-p1; cv::Point2f p23 = p3-p2; p01 = p01/a; p12 = p12/cv::norm(p12); p23 = p23/cv::norm(p23); p4 = p3+(d-c)*p23; // compensate radial distortion by fitting polynom std::vector x,y; x.resize(4,0); y.resize(4,0); x[1] = c-b; x[2] = c-a; x[3] = c; y[2] = calcSignedDistance(-p23,p3,p1); y[3] = calcSignedDistance(-p23,p3,p0); polyfit(cv::Mat(x),cv::Mat(y),dst,2); d = d-c; double e = dst.at(0)-dst.at(1)*fabs(d)+dst.at(2)*d*d; cv::Vec3f v1(p23.x,p23.y,0); cv::Vec3f v2(0,0,1); cv::Vec3f v3 = v1.cross(v2); cv::Point2f n2(v3[0],v3[1]); p4 += e*n2; return true; } // H is describing the transformation from dummy to reality Ellipse Chessboard::Board::estimateSearchArea(cv::Mat _H,int row, int col,float p,int field_size) { cv::Matx31d point1,point2,center; center(0) = (1+col)*field_size; center(1) = (1+row)*field_size; center(2) = 1.0; point1(0) = center(0)-p*field_size; point1(1) = center(1); point1(2) = center(2); point2(0) = center(0); point2(1) = center(1)-p*field_size; point2(2) = center(2); cv::Matx33d H(_H); point1 = H*point1; point2 = H*point2; center = H*center; cv::Point2f pt(float(center(0)/center(2)),float(center(1)/center(2))); cv::Point2f pt1(float(point1(0)/point1(2)),float(point1(1)/point1(2))); cv::Point2f pt2(float(point2(0)/point2(2)),float(point2(1)/point2(2))); cv::Point2f p01(pt1-pt); cv::Point2f p02(pt2-pt); float norm1 = float(cv::norm(p01)); float norm2 = float(cv::norm(p02)); float angle = float(acos(p01.dot(p02)/norm1/norm2)); cv::Size2f axes(norm1,norm2); return Ellipse(pt,axes,angle); } bool Chessboard::Board::estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p,Ellipse &ellipse,const cv::Point2f *p0) { cv::Point2f p4,n; if(p0) { // use 1D homography if(!estimatePoint(*p0,p1,p2,p3,p4)) return false; n = p4-*p0; } else { // use cross ratio if(!estimatePoint(p1,p2,p3,p4)) return false; n = p4-p1; } float norm = float(cv::norm(n)); n = n/norm; float angle = acos(n.x); if(n.y > 0) angle = float(2.0F*CV_PI-angle); n = p4-p3; norm = float(cv::norm(n)); double delta = std::max(3.0F,p*norm); ellipse = Ellipse(p4,cv::Size(int(delta),int(std::max(2.0,delta*ELLIPSE_WIDTH))),angle); return true; } bool Chessboard::Board::checkRowColumn(const std::vector &points) { if(points.size() < 4) { if(points.size() == 3) return true; else return false; } std::vector::const_iterator iter = points.begin(); std::vector::const_iterator iter2 = iter+1; std::vector::const_iterator iter3 = iter2+1; std::vector::const_iterator iter4 = iter3+1; Ellipse ellipse; if(!estimateSearchArea(*iter4,*iter3,*iter2,CORNERS_SEARCH*3,ellipse)) return false; if(!ellipse.contains(*iter)) return false; std::vector::const_iterator iter5 = iter4+1; for(;iter5 != points.end();++iter5) { if(!estimateSearchArea(*iter2,*iter3,*iter4,CORNERS_SEARCH,ellipse,&(*iter))) return false; if(!ellipse.contains(*iter5)) return false; iter = iter2; iter2 = iter3; iter3 = iter4; iter4 = iter5; } return true; } cv::Point2f &Chessboard::Board::getCorner(int _row,int _col) { int _rows = int(rowCount()); int _cols = int(colCount()); if(_row >= _rows || _col >= _cols) CV_Error(Error::StsBadArg,"out of bound"); if(_row == 0) { PointIter iter(top_left,TOP_LEFT); int count = 0; do { if(count == _col) return *(*iter); ++count; }while(iter.right()); } else { Cell *row_start = top_left; int count = 1; do { if(count == _row) { PointIter iter(row_start,BOTTOM_LEFT); int count2 = 0; do { if(count2 == _col) return *(*iter); ++count2; }while(iter.right()); } ++count; row_start = row_start->bottom; }while(_row); } CV_Error(Error::StsInternal,"cannot find corner"); // return *top_left->top_left; // never reached } bool Chessboard::Board::isCellBlack(int row,int col)const { return getCell(row,col)->black; } bool Chessboard::Board::hasCellMarker(int row,int col) { return getCell(row,col)->marker; } int Chessboard::Board::detectMarkers(cv::InputArray image) { cv::Mat img = image.getMat(); CV_CheckTypeEQ(img.type(), CV_8UC1, "Unsupported source type"); if(img.empty()) CV_Error(Error::StsBadArg,"image is empty"); if(isEmpty()) CV_Error(Error::StsBadArg,"board is is empty"); // get undistorted board cv::Mat board_image = warpImage(image); cv::Mat mask = cv::Mat::zeros(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE,CV_8UC1); cv::circle(mask,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/7,cv::Scalar::all(255),-1); int signal_size = cv::countNonZero(mask); CV_Assert(signal_size > 0); cv::Mat mask2 = cv::Mat::zeros(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE,CV_8UC1); cv::circle(mask2,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/2,cv::Scalar::all(255),-1); cv::circle(mask2,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/5,cv::Scalar::all(0),-1); int noise_size = cv::countNonZero(mask2); CV_Assert(noise_size > 0); std::vector dst,src; dst.push_back(cv::Point2f(0.0F,0.0F)); dst.push_back(cv::Point2f(float(DUMMY_FIELD_SIZE),0.0F)); dst.push_back(cv::Point2f(float(DUMMY_FIELD_SIZE),float(DUMMY_FIELD_SIZE))); dst.push_back(cv::Point2f(0.0F,float(DUMMY_FIELD_SIZE))); src.resize(4); // check each field int icols = int(colCount()-1); int irows = int(rowCount()-1); int count = 0; cv::Mat temp; for(int y=1;ytop_left; src[1] = *cell->top_right; src[2] = *cell->bottom_right; src[3] = *cell->bottom_left; cv::Mat H = cv::findHomography(src,dst,cv::LMEDS); cv::Mat field; cv::warpPerspective(image,field,H,cv::Size(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE)); // calc signal and noise value cv::bitwise_and(field,mask,temp); double signal = cv::sum(temp)[0]/signal_size; cv::bitwise_and(field,mask2,temp); double noise= cv::sum(temp)[0]/noise_size; // calc refrence value Cell *cell2 = getCell(y,abs(x-1)); src[0] = *cell2->top_left; src[1] = *cell2->top_right; src[2] = *cell2->bottom_right; src[3] = *cell2->bottom_left; H = cv::findHomography(src,dst,cv::LMEDS); cv::warpPerspective(image,field,H,cv::Size(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE)); cv::bitwise_and(field,mask2,temp); double reference = cv::sum(temp)[0]/noise_size; // check if marker is present if(cell->black) cell->marker = signal-noise > (reference-noise)*0.5; else cell->marker = noise-signal > (noise-reference)*0.5; if(cell->marker) count++; // std::cout << x << "/" << y << " signal " << signal << " noise " << noise << " reference " << reference << " has marker " << int(cell->marker) << std::endl; } } return count; } bool Chessboard::Board::isCellEmpty(int row,int col) { return getCell(row,col)->empty(); } Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col) { const Cell *cell = const_cast(this)->getCell(row,col); return const_cast(cell); } const Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col)const { if(row > rows-1 || row < 0 || col > cols-1 || col < 0) CV_Error(Error::StsBadArg,"out of bound"); PointIter p_iter(top_left,BOTTOM_RIGHT); for(int i=0; i< row; p_iter.bottom(),++i); for(int i=0; i< col; p_iter.right(),++i); return p_iter.getCell(); } bool Chessboard::Board::isEmpty()const { return cells.empty(); } size_t Chessboard::Board::colCount()const { return cols; } size_t Chessboard::Board::rowCount()const { return rows; } cv::Size Chessboard::Board::getSize()const { return cv::Size(int(colCount()),int(rowCount())); } void Chessboard::Board::drawEllipses(const std::vector &ellipses) { // currently there is no global image find way to store global image // without polluting namespace if(ellipses.empty()) return; //avoid compiler warning #ifdef CV_DETECTORS_CHESSBOARD_DEBUG cv::Mat img; draw(debug_image,img); std::vector::const_iterator iter = ellipses.begin(); for(;iter != ellipses.end();++iter) iter->draw(img); cv::imshow("chessboard",img); cv::waitKey(-1); #endif } // TODO also delete points bool Chessboard::Board::shrinkLeft() { if(colCount() < 4) return false; // unlink cells on the left side and delete them top_left = top_left->right; PointIter iter(top_left,BOTTOM_RIGHT); do { auto cell = iter.getCell(); auto citer = std::find(cells.begin(),cells.end(),cell->left); delete cell->left; cell->left= NULL; cells.erase(citer); } while(iter.bottom()); --cols; return true; } bool Chessboard::Board::shrinkRight() { if(colCount() < 4) return false; // unlink cells on the left side and delete them PointIter iter(top_left,BOTTOM_RIGHT); while(iter.right()); iter.left(); iter.left(); do { auto cell = iter.getCell(); auto citer = std::find(cells.begin(),cells.end(),cell->right); delete cell->right; cell->right= NULL; cells.erase(citer); } while(iter.bottom()); --cols; return true; } bool Chessboard::Board::shrinkTop() { if(rowCount() < 4) return false; // unlink cells on the left side and delete them top_left = top_left->bottom; PointIter iter(top_left,BOTTOM_RIGHT); do { auto cell = iter.getCell(); auto citer = std::find(cells.begin(),cells.end(),cell->top); delete cell->top; cell->top= NULL; cells.erase(citer); } while(iter.right()); --rows; return true; } bool Chessboard::Board::shrinkBottom() { if(rowCount() < 4) return false; // unlink cells on the left side and delete them PointIter iter(top_left,BOTTOM_RIGHT); while(iter.bottom()); iter.top(); iter.top(); do { auto cell = iter.getCell(); auto citer = std::find(cells.begin(),cells.end(),cell->bottom); delete cell->bottom; cell->bottom= NULL; cells.erase(citer); } while(iter.right()); --rows; return true; } void Chessboard::Board::growLeft() { if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,TOP_LEFT); std::vector points; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.right(); cv::Point2f *p1 = *iter2; iter2.right(); cv::Point2f *p2 = *iter2; if(iter2.right()) estimatePoint(**iter2,*p2,*p1,*p0,pt); else estimatePoint(*p2,*p1,*p0,pt); points.push_back(pt); } while(iter.bottom()); addColumnLeft(points); } bool Chessboard::Board::growLeft(const cv::Mat &map,cv::flann::Index &flann_index) { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG std::vector ellipses; #endif if(isEmpty()) CV_Error(Error::StsInternal,"growLeft: Board is empty"); PointIter iter(top_left,TOP_LEFT); std::vector points; int count = 0; Ellipse ellipse; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.right(); cv::Point2f *p1 = *iter2; iter2.right(); cv::Point2f *p2 = *iter2; cv::Point2f *p3 = NULL; if(iter2.right()) p3 = *iter2; if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3)) return false; float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt); if(pt == *p0) { ++count; points.push_back(ellipse.getCenter()); if(points.back().x < 0 || points.back().y <0) return false; } else if(result != 0) { points.push_back(pt); if(result < 0) ++count; } else { ++count; if(pt.x != pt.x) // NaN check points.push_back(ellipse.getCenter()); else points.push_back(pt); } #ifdef CV_DETECTORS_CHESSBOARD_DEBUG ellipses.push_back(ellipse); #endif } while(iter.bottom()); #ifdef CV_DETECTORS_CHESSBOARD_DEBUG drawEllipses(ellipses); #endif if(points.size()-count <= 2) return false; if(count > points.size()*0.5 || !checkRowColumn(points)) return false; addColumnLeft(points); return true; } void Chessboard::Board::growTop() { if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,TOP_LEFT); std::vector points; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.bottom(); cv::Point2f *p1 = *iter2; iter2.bottom(); cv::Point2f *p2 = *iter2; if(iter2.bottom()) estimatePoint(**iter2,*p2,*p1,*p0,pt); else estimatePoint(*p2,*p1,*p0,pt); points.push_back(pt); } while(iter.right()); addRowTop(points); } bool Chessboard::Board::growTop(const cv::Mat &map,cv::flann::Index &flann_index) { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG std::vector ellipses; #endif if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,TOP_LEFT); std::vector points; int count = 0; Ellipse ellipse; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.bottom(); cv::Point2f *p1 = *iter2; iter2.bottom(); cv::Point2f *p2 = *iter2; cv::Point2f *p3 = NULL; if(iter2.bottom()) p3 = *iter2; if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3)) return false; float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt); if(pt == *p0) { ++count; points.push_back(ellipse.getCenter()); if(points.back().x < 0 || points.back().y <0) return false; } else if(result != 0) { points.push_back(pt); if(result < 0) ++count; } else { ++count; if(pt.x != pt.x) // NaN check points.push_back(ellipse.getCenter()); else points.push_back(pt); } #ifdef CV_DETECTORS_CHESSBOARD_DEBUG ellipses.push_back(ellipse); #endif } while(iter.right()); #ifdef CV_DETECTORS_CHESSBOARD_DEBUG drawEllipses(ellipses); #endif if(count > points.size()*0.5 || !checkRowColumn(points)) return false; addRowTop(points); return true; } void Chessboard::Board::growRight() { if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,TOP_RIGHT); while(iter.right()); std::vector points; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.left(); cv::Point2f *p1 = *iter2; iter2.left(); cv::Point2f *p2 = *iter2; if(iter2.left()) estimatePoint(**iter2,*p2,*p1,*p0,pt); else estimatePoint(*p2,*p1,*p0,pt); points.push_back(pt); } while(iter.bottom()); addColumnRight(points); } bool Chessboard::Board::growRight(const cv::Mat &map,cv::flann::Index &flann_index) { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG std::vector ellipses; #endif if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,TOP_RIGHT); while(iter.right()); std::vector points; cv::Point2f pt; Ellipse ellipse; int count = 0; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.left(); cv::Point2f *p1 = *iter2; iter2.left(); cv::Point2f *p2 = *iter2; cv::Point2f *p3 = NULL; if(iter2.left()) p3 = *iter2; if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3)) return false; float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt); if(pt == *p0) { ++count; points.push_back(ellipse.getCenter()); if(points.back().x < 0 || points.back().y <0) return false; } else if(result != 0) { points.push_back(pt); if(result < 0) ++count; } else { ++count; if(pt.x != pt.x) // NaN check points.push_back(ellipse.getCenter()); else points.push_back(pt); } #ifdef CV_DETECTORS_CHESSBOARD_DEBUG ellipses.push_back(ellipse); #endif } while(iter.bottom()); #ifdef CV_DETECTORS_CHESSBOARD_DEBUG drawEllipses(ellipses); #endif if(count > points.size()*0.5 || !checkRowColumn(points)) return false; addColumnRight(points); return true; } void Chessboard::Board::growBottom() { if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,BOTTOM_LEFT); while(iter.bottom()); std::vector points; cv::Point2f pt; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.top(); cv::Point2f *p1 = *iter2; iter2.top(); cv::Point2f *p2 = *iter2; if(iter2.top()) estimatePoint(**iter2,*p2,*p1,*p0,pt); else estimatePoint(*p2,*p1,*p0,pt); points.push_back(pt); } while(iter.right()); addRowBottom(points); } bool Chessboard::Board::growBottom(const cv::Mat &map,cv::flann::Index &flann_index) { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG std::vector ellipses; #endif if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); PointIter iter(top_left,BOTTOM_LEFT); while(iter.bottom()); std::vector points; cv::Point2f pt; Ellipse ellipse; int count = 0; do { PointIter iter2(iter); cv::Point2f *p0 = *iter2; iter2.top(); cv::Point2f *p1 = *iter2; iter2.top(); cv::Point2f *p2 = *iter2; cv::Point2f *p3 = NULL; if(iter2.top()) p3 = *iter2; if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3)) return false; float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt); if(pt == *p0) { ++count; points.push_back(ellipse.getCenter()); if(points.back().x < 0 || points.back().y <0) return false; } else if(result != 0) { points.push_back(pt); if(result < 0) ++count; } else { ++count; if(pt.x != pt.x) // NaN check points.push_back(ellipse.getCenter()); else points.push_back(pt); } #ifdef CV_DETECTORS_CHESSBOARD_DEBUG ellipses.push_back(ellipse); #endif } while(iter.right()); #ifdef CV_DETECTORS_CHESSBOARD_DEBUG drawEllipses(ellipses); #endif if(count > points.size()*0.5 || !checkRowColumn(points)) return false; addRowBottom(points); return true; } void Chessboard::Board::addColumnLeft(const std::vector &points) { if(points.empty() || points.size() != rowCount()) CV_Error(Error::StsBadArg,"wrong number of points"); int offset = int(cells.size()); cells.resize(offset+points.size()-1); for(int i = offset;i < (int) cells.size();++i) cells[i] = new Cell(); corners.push_back(new cv::Point2f(points.front())); Cell *cell = top_left; std::vector::const_iterator iter = points.begin()+1; for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos) { cell->left = cells[pos]; cells[pos]->black = !cell->black; if(pos != offset) cells[pos]->top = cells[pos-1]; cells[pos]->right = cell; if(pos +1 < (int)cells.size()) cells[pos]->bottom= cells[pos+1]; cells[pos]->top_left = corners.back(); corners.push_back(new cv::Point2f(*iter)); cells[pos]->bottom_left = corners.back(); cells[pos]->top_right=cell->top_left; cells[pos]->bottom_right=cell->bottom_left; } top_left = cells[offset]; ++cols; } void Chessboard::Board::addRowTop(const std::vector &points) { if(points.empty() || points.size() != colCount()) CV_Error(Error::StsBadArg,"wrong number of points"); int offset = int(cells.size()); cells.resize(offset+points.size()-1); for(int i = offset;i < (int) cells.size();++i) cells[i] = new Cell(); corners.push_back(new cv::Point2f(points.front())); Cell *cell = top_left; std::vector::const_iterator iter = points.begin()+1; for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos) { cell->top = cells[pos]; cells[pos]->black = !cell->black; if(pos != offset) cells[pos]->left= cells[pos-1]; cells[pos]->bottom= cell; if(pos +1 <(int) cells.size()) cells[pos]->right= cells[pos+1]; cells[pos]->top_left = corners.back(); corners.push_back(new cv::Point2f(*iter)); cells[pos]->top_right = corners.back(); cells[pos]->bottom_left = cell->top_left; cells[pos]->bottom_right = cell->top_right; } top_left = cells[offset]; ++rows; } void Chessboard::Board::addColumnRight(const std::vector &points) { if(points.empty() || points.size() != rowCount()) CV_Error(Error::StsBadArg,"wrong number of points"); int offset = int(cells.size()); cells.resize(offset+points.size()-1); for(int i = offset;i < (int) cells.size();++i) cells[i] = new Cell(); corners.push_back(new cv::Point2f(points.front())); Cell *cell = top_left; for(;cell->right;cell = cell->right); std::vector::const_iterator iter = points.begin()+1; for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos) { cell->right = cells[pos]; cells[pos]->black = !cell->black; if(pos != offset) cells[pos]->top= cells[pos-1]; cells[pos]->left = cell; if(pos +1 <(int) cells.size()) cells[pos]->bottom= cells[pos+1]; cells[pos]->top_right = corners.back(); corners.push_back(new cv::Point2f(*iter)); cells[pos]->bottom_right = corners.back(); cells[pos]->top_left =cell->top_right; cells[pos]->bottom_left =cell->bottom_right; } ++cols; } void Chessboard::Board::addRowBottom(const std::vector &points) { if(points.empty() || points.size() != colCount()) CV_Error(Error::StsBadArg,"wrong number of points"); int offset = int(cells.size()); cells.resize(offset+points.size()-1); for(int i = offset;i < (int) cells.size();++i) cells[i] = new Cell(); corners.push_back(new cv::Point2f(points.front())); Cell *cell = top_left; for(;cell->bottom;cell = cell->bottom); std::vector::const_iterator iter = points.begin()+1; for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos) { cell->bottom = cells[pos]; cells[pos]->black = !cell->black; if(pos != offset) cells[pos]->left = cells[pos-1]; cells[pos]->top = cell; if(pos +1 < (int)cells.size()) cells[pos]->right= cells[pos+1]; cells[pos]->bottom_left = corners.back(); corners.push_back(new cv::Point2f(*iter)); cells[pos]->bottom_right = corners.back(); cells[pos]->top_left = cell->bottom_left; cells[pos]->top_right = cell->bottom_right; } ++rows; } bool Chessboard::Board::checkUnique()const { std::vector points = getCorners(false); std::vector::const_iterator iter = points.begin(); for(;iter != points.end();++iter) { std::vector::const_iterator iter2 = iter+1; for(;iter2 != points.end();++iter2) { if(*iter == *iter2) return false; } } return true; } int Chessboard::Board::validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response) { // TODO check input if(isEmpty() || h.empty()) return 0; int count = 0; int icol = 0; // first row PointIter iter(top_left,TOP_LEFT); cv::Point2f point; do { if((*iter)->x == (*iter)->x) ++count; else { Ellipse ellipse = estimateSearchArea(h,0,icol,0.4F); float result = findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point); if(fabs(result) >= min_response) { ++count; **iter = point; } } ++icol; }while(iter.right()); // all other rows int irow = 1; Cell *row = top_left; do { PointIter iter2(row,BOTTOM_LEFT); icol = 0; do { if((*iter2)->x == (*iter2)->x) ++count; else { Ellipse ellipse = estimateSearchArea(h,irow,icol,0.4F); if(min_response <= findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point)) { ++count; **iter2 = point; } } ++icol; }while(iter2.right()); row = row->bottom; ++irow; }while(row); // check that there are no points with the same coordinate std::vector points = getCorners(false); std::vector::const_iterator iter1 = points.begin(); for(;iter1 != points.end();++iter1) { // we do not have to check for NaN because of getCorners(false) std::vector::const_iterator iter2 = iter1+1; for(;iter2 != points.end();++iter2) if(*iter1 == *iter2) return -1; // one corner is there twice -> not valid configuration } return count; } bool Chessboard::Board::validateContour()const { std::vector contour = getContour(); if(contour.size() != 4) { return false; } cv::Point2f n1 = contour[1]-contour[0]; cv::Point2f n2 = contour[2]-contour[1]; cv::Point2f n3 = contour[3]-contour[2]; cv::Point2f n4 = contour[0]-contour[3]; n1 = n1/cv::norm(n1); n2 = n2/cv::norm(n2); n3 = n3/cv::norm(n3); n4 = n4/cv::norm(n4); // a > b => cos(a) < cos(b) if(fabs(n1.dot(n2)) > MIN_COS_ANGLE|| fabs(n2.dot(n3)) > MIN_COS_ANGLE|| fabs(n3.dot(n4)) > MIN_COS_ANGLE|| fabs(n4.dot(n1)) > MIN_COS_ANGLE) return false; return true; } std::vector Chessboard::Board::getContour()const { std::vector points; if(isEmpty()) return points; //find start cell part of the contour Cell* start_cell = NULL; PointIter iter(top_left,TOP_LEFT); do { PointIter iter2(iter); do { if(!iter2.getCell()->empty()) { start_cell = iter2.getCell(); iter = iter2; break; } }while(iter2.right()); }while(!start_cell && iter.bottom()); if(start_cell == NULL) return points; // trace contour const cv::Point2f *start_pt = *iter; int mode = 2; int last = -1; do { PointIter current_iter(iter); switch(mode) { case 1: // top if(iter.top(true)) { if(last != 1) points.push_back(**current_iter); mode = 4; last = 1; break; } /* fallthrough */ case 2: // right if(iter.right(true)) { if(last != 2) points.push_back(**current_iter); mode = 1; last = 2; break; } /* fallthrough */ case 3: // bottom if(iter.bottom(true)) { if(last != 3) points.push_back(**current_iter); mode = 2; last = 3; break; } /* fallthrough */ case 4: // left if(iter.left(true)) { if(last != 4) points.push_back(**current_iter); mode = 3; last = 4; break; } mode = 1; break; default: CV_Error(Error::StsInternal,"cannot retrieve contour"); } }while(*iter != start_pt); return points; } void Chessboard::Board::maskImage(cv::InputOutputArray img,const cv::Scalar &color)const { Chessboard::Board temp(*this); temp.growLeft(); temp.growRight(); temp.growTop(); temp.growBottom(); cv::Mat contour; cv::Mat(temp.getContour()).convertTo(contour,CV_32S); std::vector contours; contours.push_back(contour); cv::drawContours(img,contours,0,color,-1); } cv::Mat Chessboard::Board::estimateHomography(cv::Rect rect,int field_size)const { int _rows = int(rowCount()); int _cols = int(colCount()); if(_rows < 3 || _cols < 3) return cv::Mat(); if(rect.width <= 0) rect.width= _cols; if(rect.height <= 0) rect.height= _rows; int col_end = std::min(rect.x+rect.width,_cols); int row_end = std::min(rect.y+rect.height,_rows); std::vector points = getCorners(true); // build src and dst std::vector src,dst; for(int row =rect.y;row < row_end;++row) { for(int col=rect.x;col src,dst; std::vector points = getCorners(true); std::vector::const_iterator iter = points.begin(); for(int row =0;row < _rows;++row) { for(int col=0;col <_cols;++col,++iter) { const cv::Point2f &pt = *iter; if(pt.x == pt.x) { src.push_back(cv::Point2f(float(field_size)*(col+1),float(field_size)*(row+1))); dst.push_back(pt); } } } if(dst.size() < 4) return cv::Mat(); return cv::findHomography(src, dst); } bool Chessboard::Board::findNextPoint(cv::flann::Index &index,const cv::Mat &data, const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3, float white_angle,float black_angle,float min_response,cv::Point2f &point) { Ellipse ellipse; if(!estimateSearchArea(pt1,pt2,pt3,0.4F,ellipse)) return false; if(min_response > fabs(findMaxPoint(index,data,ellipse,white_angle,black_angle,point))) return false; return true; } int Chessboard::Board::grow(const cv::Mat &map,cv::flann::Index &flann_index) { if(isEmpty()) CV_Error(Error::StsInternal,"Board is empty"); bool bleft = true; bool btop = true; bool bright = true; bool bbottom= true; int count = 0; do { if(btop) { btop= growTop(map,flann_index); if(btop) { ++count; continue; } } if(bbottom) { bbottom= growBottom(map,flann_index); if(bbottom) { ++count; continue; } } // grow to the left if(bleft) { bleft = growLeft(map,flann_index); if(bleft) { ++count; continue; } } if(bright) { bright= growRight(map,flann_index); if(bright) { ++count; continue; } } }while(bleft || btop || bright || bbottom ); return count; } std::map Chessboard::Board::getMapping()const { std::map map; std::vector points = getCorners(); std::vector::iterator iter = points.begin(); for(int idx1=0,idx2=0;iter != points.end();++iter,++idx1) { if(iter->x != iter->x) // NaN check continue; map[idx1] = idx2++; } return map; } std::vector Chessboard::Board::getCorners(bool ball)const { std::vector points; if(isEmpty()) return points; // first row PointIter iter(top_left,TOP_LEFT); do { if(ball || !iter.isNaN()) points.push_back(*(*iter)); }while(iter.right()); // all other rows Cell *row = top_left; do { PointIter iter2(row,BOTTOM_LEFT); do { if(ball || !iter2.isNaN()) points.push_back(*(*iter2)); }while(iter2.right()); row = row->bottom; }while(row); return points; } std::vector Chessboard::Board::getKeyPoints(bool ball)const { std::vector keypoints; std::vector points = getCorners(ball); std::vector::const_iterator iter = points.begin(); for(;iter != points.end();++iter) keypoints.push_back(cv::KeyPoint(iter->x,iter->y,1)); return keypoints; } cv::Scalar Chessboard::Board::calcEdgeSharpness(cv::InputArray _img,float rise_distance,bool vertical,cv::OutputArray _sharpness) { cv::Mat img = _img.getMat(); if(img.empty()) CV_Error(Error::StsBadArg,"image is empty"); if(img.type() != CV_8UC1) CV_Error(Error::StsBadArg,"image type is not supported. Expect CV_8UC1"); int tcols = int(colCount()); int trows = int(rowCount()); std::vector centers = getCellCenters(); if(int(centers.size()) != trows*tcols) CV_Error(Error::StsInternal,"internal error - size mismatch"); // build horizontal lines std::vector > pairs; if(vertical) { for(int row = 1;row < trows-1;++row) { std::vector::const_iterator iter1 = centers.begin()+row*tcols; std::vector::const_iterator iter2 = iter1+1; for(int col= 0;col< tcols-1;++col,++iter1,++iter2) pairs.push_back(std::make_pair(*iter1,*iter2)); } } else { // build vertical lines for(int col = 1;col< tcols-1;++col) { // avoid using iterators to not trigger out of range int i1 = col; int i2 = i1 + tcols; for (int row = 0; row < trows - 1; ++row, i1 += tcols, i2 += tcols) { pairs.push_back(std::make_pair(centers[i1], centers[i2])); } } } // calc edge response for each line cv::Rect rect(0,0,img.cols,img.rows); std::vector >::const_iterator iter = pairs.begin(); int count = 0; float sharpness = 0; float max_val= 0; float min_val= 0; double dmin,dmax; cv::Mat data = cv::Mat::zeros(int(pairs.size()),5,CV_32FC1); for(;iter != pairs.end();++iter) { // get values from the image if(!rect.contains(iter->first) || !rect.contains(iter->second)) continue; int delta = int(cv::norm(iter->second-iter->first)); if(delta < 10) continue; float dx = (iter->second.x-iter->first.x)/delta; float dy = (iter->second.y-iter->first.y)/delta; std::vector values; cv::Mat patch; for(int i=0;ifirst.x+dx*i,iter->first.y+dy*i); for(int num=-1;num < 2;++num) { cv::Point2f p1(p0.x+dy*num,p0.y-dx*num); if(!rect.contains(p1)) continue; cv::getRectSubPix(img,cv::Size(1,1),p1,patch); value += patch.at(0,0); ++count2; } values.push_back(count2 > 0 ? uint8_t(value/count2) : 0); } float val = calcSharpness(values,rise_distance); sharpness += val; cv::minMaxLoc(values,&dmin,&dmax); max_val+= float(dmax); min_val += float(dmin); data.at(count,0) = iter->first.x+(iter->second.x-iter->first.x)/2; data.at(count,1) = iter->first.y+(iter->second.y-iter->first.y)/2; data.at(count,2) = val; data.at(count,3) = float(dmin); data.at(count,4) = float(dmax); count +=1; } if(count == 0) { std::cout <<"calcEdgeSharpness: checkerboard too small for calculation." << std::endl; return cv::Scalar::all(9999); } sharpness = sharpness/float(count); max_val = max_val/float(count); min_val = min_val/float(count); if(_sharpness.needed()) data.copyTo(_sharpness); return cv::Scalar(sharpness,min_val,max_val); } Chessboard::Chessboard(const Parameters ¶) { reconfigure(para); } void Chessboard::reconfigure(const Parameters &config) { parameters = config; } Chessboard::Parameters Chessboard::getPara()const { return parameters; } Chessboard::~Chessboard() { } void Chessboard::findKeyPoints(const cv::Mat& image, std::vector& keypoints,std::vector &feature_maps, std::vector > &angles ,const cv::Mat& mask)const { keypoints.clear(); angles.clear(); vector keypoints_temp; FastX::Parameters para; para.branches = 2; // this is always the case for checssboard corners para.strength = 150; // minimal threshold para.resolution = float(CV_PI*0.25); // this gives the best results taking interpolation into account para.filter = 1; para.super_resolution = parameters.super_resolution; para.min_scale = parameters.min_scale; para.max_scale = parameters.max_scale; FastX detector(para); std::vector rotated_images; detector.detectImpl(image,rotated_images,feature_maps,mask); //calculate seed chessboard corners detector.findKeyPoints(feature_maps,keypoints_temp,mask); //sort points and limit number int max_seeds = std::min((int)keypoints_temp.size(),parameters.max_points); if(max_seeds < 9) return; std::partial_sort(keypoints_temp.begin(),keypoints_temp.begin()+max_seeds-1, keypoints_temp.end(),sortKeyPoint); keypoints_temp.resize(max_seeds); std::vector > angles_temp = detector.calcAngles(rotated_images,keypoints_temp); // filter out keypoints which are not symmetric std::vector::iterator iter1 = keypoints_temp.begin(); std::vector >::const_iterator iter2 = angles_temp.begin(); for(;iter1 != keypoints_temp.end();++iter1,++iter2) { cv::KeyPoint &pt = *iter1; const std::vector &angles_i3 = *iter2; if(angles_i3.size() != 2)// || pt.response < noise) continue; int result = testPointSymmetry(image,pt.pt,pt.size*0.7F,std::max(10.0F,sqrt(pt.response)+0.5F*pt.size)); if(result > MAX_SYMMETRY_ERRORS) continue; else if(result > 3) pt.response = - pt.response; angles.push_back(angles_i3); keypoints.push_back(pt); } } cv::Mat Chessboard::buildData(const std::vector& keypoints)const { cv::Mat data(int(keypoints.size()),4,CV_32FC1); // x + y + angle + strength std::vector::const_iterator iter = keypoints.begin(); float *val = reinterpret_cast(data.data); for(;iter != keypoints.end();++iter) { (*val++) = iter->pt.x; (*val++) = iter->pt.y; (*val++) = float(2.0*CV_PI-iter->angle/180.0*CV_PI); (*val++) = iter->response; } return data; } std::vector Chessboard::getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint ¢er,float white_angle,float black_angle,float min_response)const { CV_CheckTypeEQ(data.type(), CV_32FC1, "Unsupported source type"); if(data.cols != 4) CV_Error(Error::StsBadArg,"wrong data format"); std::vector query,dists; std::vector indices; query.resize(2); query[0] = center.pt.x; query[1] = center.pt.y; flann_index.knnSearch(query,indices,dists,21,cv::flann::SearchParams(32)); // collect all points having a similar angle and response std::vector points; std::vector::const_iterator ids_iter = indices.begin()+1; // first point is center points.push_back(center); for(;ids_iter != indices.end();++ids_iter) { // TODO do more angle tests // test only one angle against the stored one const float &response = data.at(*ids_iter,3); if(fabs(response) < min_response) continue; const float &angle = data.at(*ids_iter,2); float angle_temp = fabs(angle-white_angle); if(angle_temp > CV_PI*0.5) angle_temp = float(fabs(angle_temp-CV_PI)); if(angle_temp > MAX_ANGLE) { angle_temp = fabs(angle-black_angle); if(angle_temp > CV_PI*0.5) angle_temp = float(fabs(angle_temp-CV_PI)); if(angle_temp >MAX_ANGLE) continue; } points.push_back(cv::KeyPoint(data.at(*ids_iter,0),data.at(*ids_iter,1),center.size,angle,response)); } return points; } Chessboard::BState Chessboard::generateBoards(cv::flann::Index &flann_index,const cv::Mat &data, const cv::KeyPoint ¢er,float white_angle,float black_angle,float min_response,const cv::Mat& img, std::vector &boards)const { // collect all points having a similar angle std::vector kpoints= getInitialPoints(flann_index,data,center,white_angle,black_angle,min_response); if(kpoints.size() < 5) return MISSING_POINTS; if(!img.empty()) { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG cv::Mat out; cv::drawKeypoints(img,kpoints,out,cv::Scalar(0,0,255,255),4); std::vector temp; temp.push_back(kpoints.front()); cv::drawKeypoints(out,temp,out,cv::Scalar(0,255,0,255),4); cv::imshow("chessboard",out); cv::waitKey(-1); #endif } // use angles to filter out points std::vector points; cv::Vec2f n1(cos(white_angle),-sin(white_angle)); cv::Vec2f n2(cos(black_angle),-sin(black_angle)); std::vector::const_iterator iter1 = kpoints.begin()+1; // first point is center for(;iter1 != kpoints.end();++iter1) { // calc angle cv::Vec2f vec(iter1->pt-center.pt); vec = vec/cv::norm(vec); if(fabs(vec.dot(n1)) < 0.96 && fabs(vec.dot(n2)) < 0.96) //check that angle is bigger than 15° points.push_back(*iter1); } // generate pairs those connection goes through the center std::vector > pairs; iter1 = points.begin(); for(;iter1 != points.end();++iter1) { std::vector::const_iterator iter2 = iter1+1; for(;iter2 != points.end();++iter2) { if(isPointOnLine(iter1->pt,iter2->pt,center.pt,0.97F)) { if(cv::norm(iter1->pt) < cv::norm(iter2->pt)) pairs.push_back(std::make_pair(*iter1,*iter2)); else pairs.push_back(std::make_pair(*iter2,*iter1)); } } } // generate all possible combinations consisting of two pairs if(pairs.size() < 2) return MISSING_PAIRS; std::vector >::iterator iter_pair1 = pairs.begin(); BState best_state = MISSING_PAIRS; for(;iter_pair1 != pairs.end();++iter_pair1) { cv::Point2f p1 = iter_pair1->second.pt-iter_pair1->first.pt; p1 = p1/cv::norm(p1); std::vector >::iterator iter_pair2 = iter_pair1+1; for(;iter_pair2 != pairs.end();++iter_pair2) { cv::Point2f p2 = iter_pair2->second.pt-iter_pair2->first.pt; p2 = p2/cv::norm(p2); if(p2.dot(p1) > 0.95) { if(best_state < WRONG_PAIR_ANGLE) best_state = WRONG_PAIR_ANGLE; } else { // check orientations if(checkOrientation(iter_pair1->first.pt,iter_pair1->second.pt,iter_pair2->first.pt,iter_pair2->second.pt)) std::swap(iter_pair2->first,iter_pair2->second); // minimal case std::vector board_points; board_points.resize(9,cv::Point2f(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN())); board_points[1] = iter_pair2->first.pt; board_points[3] = iter_pair1->first.pt; board_points[4] = center.pt; board_points[5] = iter_pair1->second.pt; board_points[7] = iter_pair2->second.pt; boards.push_back(Board(cv::Size(3,3),board_points,white_angle,black_angle)); Board &board = boards.back(); if(board.isEmpty()) { if(best_state < WRONG_CONFIGURATION) best_state = WRONG_CONFIGURATION; boards.pop_back(); // MAKE SURE board is no longer used !!!! continue; } best_state = FOUND_BOARD; } } } return best_state; } void Chessboard::detectImpl(const Mat& image, vector& keypoints,std::vector &feature_maps,const Mat& mask)const { keypoints.clear(); Board board = detectImpl(image,feature_maps,mask); keypoints = board.getKeyPoints(); return; } Chessboard::Board Chessboard::detectImpl(const Mat& gray,std::vector &feature_maps,const Mat& mask)const { #ifdef CV_DETECTORS_CHESSBOARD_DEBUG debug_image = gray; #endif CV_CheckTypeEQ(gray.type(),CV_8UC1, "Unsupported image type"); cv::Size chessboard_size2(parameters.chessboard_size.height,parameters.chessboard_size.width); std::vector keypoints_seed; std::vector > angles; findKeyPoints(gray,keypoints_seed,feature_maps,angles,mask); if(int(keypoints_seed.size()) < parameters.chessboard_size.width * parameters.chessboard_size.height) return Chessboard::Board(); // check how many points are likely a checkerboard corner float response = fabs(keypoints_seed.front().response*MIN_RESPONSE_RATIO); std::vector::const_iterator seed_iter = keypoints_seed.begin(); int count = 0; int inum = chessboard_size2.width*chessboard_size2.height; for(;seed_iter != keypoints_seed.end() && count < inum;++seed_iter,++count) { // points are sorted based on response if(fabs(seed_iter->response) < response) { seed_iter = keypoints_seed.end(); return Chessboard::Board(); } } // just add dummy points or flann will fail during knnSearch if(keypoints_seed.size() < 21) keypoints_seed.resize(21, cv::KeyPoint(-99999.0F,-99999.0F,0.0F,0.0F,0.0F)); //build kd tree cv::Mat data = buildData(keypoints_seed); cv::Mat flann_data(data.rows,2,CV_32FC1); data(cv::Rect(0,0,2,data.rows)).copyTo(flann_data); cv::flann::Index flann_index(flann_data,cv::flann::KDTreeIndexParams(1),cvflann::FLANN_DIST_EUCLIDEAN); // for each point std::vector >::const_iterator angles_iter = angles.begin(); std::vector::const_iterator points_iter = keypoints_seed.begin(); cv::Rect bounding_box(5,5,gray.cols-10,gray.rows-10); int max_tests = std::min(parameters.max_tests,int(keypoints_seed.size())); for(count=0;count < max_tests;++angles_iter,++points_iter,++count) { // regard current point as center point // which must have two angles!!! (this was already checked) float min_response = points_iter->response*MIN_RESPONSE_RATIO; if(min_response <= 0) { if(max_tests+1 < int(keypoints_seed.size())) ++max_tests; continue; } const std::vector &angles_i = *angles_iter; float white_angle = fabs(angles_i.front()); // angle is negative if black --> clockwise float black_angle = fabs(angles_i.back()); // angle is negative if black --> clockwise if(angles_i.front() < 0) // ensure white angle is first swap(white_angle,black_angle); std::vector boards; generateBoards(flann_index, data,*points_iter,white_angle,black_angle,min_response,gray,boards); parallel_for_(Range(0,(int)boards.size()),[&](const Range& range){ for(int i=range.start;i estimateHomography(); int size = iter_boards->validateCorners(data,flann_index,h,min_response); if(size != 9 || !iter_boards->validateContour()) { iter_boards->clear(); continue; } //grow based on kd-tree iter_boards->grow(data,flann_index); if(!iter_boards->checkUnique()) { iter_boards->clear(); continue; } // check bounding box std::vector contour = iter_boards->getContour(); std::vector::const_iterator iter = contour.begin(); for(;iter != contour.end();++iter) { if(!bounding_box.contains(*iter)) break; } if(iter != contour.end()) { iter_boards->clear(); continue; } if(iter_boards->getSize() == parameters.chessboard_size || iter_boards->getSize() == chessboard_size2) { iter_boards->normalizeOrientation(false); if(iter_boards->getSize() != parameters.chessboard_size) { if(iter_boards->isCellBlack(0,0) == iter_boards->isCellBlack(0,int(iter_boards->colCount())-1)) iter_boards->rotateLeft(); else iter_boards->rotateRight(); } #ifdef CV_DETECTORS_CHESSBOARD_DEBUG cv::Mat img; iter_boards->draw(debug_image,img); cv::imshow("chessboard",img); cv::waitKey(-1); #endif } else { if(iter_boards->getSize().width < chessboard_size2.width || iter_boards->getSize().height < chessboard_size2.height) iter_boards->clear(); else if(!parameters.larger) iter_boards->clear(); else { // try to optimize board while(true) { Board temp(*iter_boards); temp.shrinkRight(); temp.shrinkLeft(); temp.shrinkRight(); temp.shrinkLeft(); temp.growTop(data,flann_index); temp.growBottom(data,flann_index); temp.grow(data,flann_index); if(temp.rowCount()*temp.colCount() > iter_boards->rowCount()*iter_boards->colCount()) { *iter_boards = temp; continue; } temp = (*iter_boards); temp = (*iter_boards); temp.shrinkTop(); temp.shrinkBottom(); temp.shrinkTop(); temp.shrinkBottom(); temp.growLeft(data,flann_index); temp.growRight(data,flann_index); temp.grow(data,flann_index); if(temp.rowCount()*temp.colCount() > iter_boards->rowCount()*iter_boards->colCount()) { *iter_boards = temp; continue; } break; } } } // check for markers if(!iter_boards->isEmpty() && parameters.marker) { auto icount = iter_boards->detectMarkers(gray); if(3 != icount || !iter_boards->normalizeMarkerOrientation()) iter_boards->clear(); } } }); // check if a good board was found // check if a good board was found and return largest one const Board *best_board = NULL; for(const auto &board : boards) { if(!board.isEmpty()) { if(!best_board || best_board->rowCount() * best_board->colCount() < board.colCount()*board.rowCount()) best_board = &board; } } if(best_board) return *best_board; } return Chessboard::Board(); } void Chessboard::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector& keypoints, cv::OutputArray descriptors,bool useProvidedKeyPoints) { descriptors.clear(); useProvidedKeyPoints=false; std::vector maps; detectImpl(image.getMat(),keypoints,maps,mask.getMat()); if(!useProvidedKeyPoints) // suppress compiler warning return; return; } void Chessboard::detectImpl(const Mat& image, vector& keypoints,const Mat& mask)const { std::vector maps; detectImpl(image,keypoints,maps,mask); } void Chessboard::detectImpl(InputArray image, std::vector& keypoints, InputArray mask)const { detectImpl(image.getMat(),keypoints,mask.getMat()); } } // end namespace details // public API bool findChessboardCornersSB(cv::InputArray image_, cv::Size pattern_size, cv::OutputArray corners_, int flags, cv::OutputArray meta_) { CV_INSTRUMENT_REGION(); int type = image_.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_CheckType(type, depth == CV_8U && (cn == 1 || cn == 3), "Only 8-bit grayscale or color images are supported"); if(pattern_size.width <= 2 || pattern_size.height <= 2) { CV_Error(Error::StsOutOfRange, "Both width and height of the pattern should have bigger than 2"); } if (!corners_.needed()) CV_Error(Error::StsNullPtr, "Null pointer to corners"); Mat img; if (image_.channels() != 1) cvtColor(image_, img, COLOR_BGR2GRAY); else img = image_.getMat(); details::Chessboard::Parameters para; para.chessboard_size = pattern_size; para.min_scale = 2; para.max_scale = 4; para.max_tests = 30; para.max_points = std::max(100,pattern_size.width*pattern_size.height*2); para.super_resolution = false; // setup search based on flags if(flags & CALIB_CB_NORMALIZE_IMAGE) { Mat tmp; cv::equalizeHist(img, tmp); swap(img, tmp); flags ^= CALIB_CB_NORMALIZE_IMAGE; } if(flags & CALIB_CB_EXHAUSTIVE) { para.max_tests = 100; para.max_points = std::max(1000,pattern_size.width*pattern_size.height*2); flags ^= CALIB_CB_EXHAUSTIVE; } if(flags & CALIB_CB_ACCURACY) { para.super_resolution = true; flags ^= CALIB_CB_ACCURACY; } if(flags & CALIB_CB_LARGER) { para.larger = true; flags ^= CALIB_CB_LARGER; } if(flags & CALIB_CB_MARKER) { para.marker = true; para.max_points *= 4; flags ^= CALIB_CB_MARKER; } if(flags) CV_Error(Error::StsOutOfRange, cv::format("Invalid remaining flags %d", (int)flags)); std::vector corners; details::Chessboard detector(para); std::vector maps; details::Chessboard::Board board = detector.detectImpl(img,maps,cv::Mat()); corners = board.getKeyPoints(); if(corners.empty()) { corners_.release(); if(meta_.needed()) meta_.release(); return false; } std::vector points; KeyPoint::convert(corners,points); Mat(points).copyTo(corners_); // export meta data if(meta_.needed()) { meta_.create(int(board.rowCount()),int(board.colCount()),CV_8UC1); cv::Mat meta = meta_.getMat(); meta = 0; for(int row =0;row < meta.rows-1;++row) { for(int col=0;col< meta.cols-1;++col) { if(board.isCellBlack(row,col)) { if(board.hasCellMarker(row,col)) meta.at(row,col) = 3; else meta.at(row,col) = 1; } else { if(board.hasCellMarker(row,col)) meta.at(row,col) = 4; // origin else meta.at(row,col) = 2; } } } } return true; } // public API cv::Scalar estimateChessboardSharpness(InputArray image_, Size patternSize, InputArray corners_, float rise_distance,bool vertical, cv::OutputArray sharpness) { CV_INSTRUMENT_REGION(); int type = image_.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_CheckType(type, depth == CV_8U && (cn == 1 || cn == 3), "Only 8-bit grayscale or color images are supported"); if(patternSize.width <= 2 || patternSize.height <= 2) CV_Error(Error::StsOutOfRange, "Both width and height of the pattern should have bigger than 2"); cv::Mat corners = details::normalizeVector(corners_); std::vector points; corners.reshape(2,corners.rows).convertTo(points,CV_32FC2); if(int(points.size()) != patternSize.width * patternSize.height) CV_Error(Error::StsBadArg, "Size mismatch between patternSize and number of provided corners."); Mat img; if (image_.channels() != 1) cvtColor(image_, img, COLOR_BGR2GRAY); else img = image_.getMat(); details::Chessboard::Board board(patternSize,points); return board.calcEdgeSharpness(img,rise_distance,vertical,sharpness); } } // namespace cv