/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined CUDA_DISABLER #include "opencv2/core/cuda/common.hpp" #include "opencv2/core/cuda/vec_traits.hpp" #include "opencv2/core/cuda/vec_math.hpp" #include "opencv2/core/cuda/functional.hpp" #include "opencv2/core/cuda/reduce.hpp" #include "opencv2/core/cuda/emulation.hpp" #include "opencv2/core/cuda/limits.hpp" #include "opencv2/core/cuda/utility.hpp" using namespace cv::cuda; using namespace cv::cuda::device; namespace minMaxLoc { // To avoid shared bank conflicts we convert each value into value of // appropriate type (32 bits minimum) template struct MinMaxTypeTraits; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef float best_type; }; template <> struct MinMaxTypeTraits { typedef double best_type; }; template __global__ void kernel_pass_1(const PtrStepSz src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight) { typedef typename MinMaxTypeTraits::best_type work_type; __shared__ work_type sminval[BLOCK_SIZE]; __shared__ work_type smaxval[BLOCK_SIZE]; __shared__ unsigned int sminloc[BLOCK_SIZE]; __shared__ unsigned int smaxloc[BLOCK_SIZE]; const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x; const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y; const int tid = threadIdx.y * blockDim.x + threadIdx.x; const int bid = blockIdx.y * gridDim.x + blockIdx.x; work_type mymin = numeric_limits::max(); work_type mymax = -numeric_limits::max(); unsigned int myminloc = 0; unsigned int mymaxloc = 0; for (int i = 0, y = y0; i < theight && y < src.rows; ++i, y += blockDim.y) { const T* ptr = src.ptr(y); for (int j = 0, x = x0; j < twidth && x < src.cols; ++j, x += blockDim.x) { if (mask(y, x)) { const work_type srcVal = ptr[x]; if (srcVal < mymin) { mymin = srcVal; myminloc = y * src.cols + x; } if (srcVal > mymax) { mymax = srcVal; mymaxloc = y * src.cols + x; } } } } reduceKeyVal(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc), tid, thrust::make_tuple(less(), greater())); if (tid == 0) { minval[bid] = (T) mymin; maxval[bid] = (T) mymax; minloc[bid] = myminloc; maxloc[bid] = mymaxloc; } } template __global__ void kernel_pass_2(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int count) { typedef typename MinMaxTypeTraits::best_type work_type; __shared__ work_type sminval[BLOCK_SIZE]; __shared__ work_type smaxval[BLOCK_SIZE]; __shared__ unsigned int sminloc[BLOCK_SIZE]; __shared__ unsigned int smaxloc[BLOCK_SIZE]; unsigned int idx = ::min(threadIdx.x, count - 1); work_type mymin = minval[idx]; work_type mymax = maxval[idx]; unsigned int myminloc = minloc[idx]; unsigned int mymaxloc = maxloc[idx]; reduceKeyVal(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc), threadIdx.x, thrust::make_tuple(less(), greater())); if (threadIdx.x == 0) { minval[0] = (T) mymin; maxval[0] = (T) mymax; minloc[0] = myminloc; maxloc[0] = mymaxloc; } } const int threads_x = 32; const int threads_y = 8; void getLaunchCfg(int cols, int rows, dim3& block, dim3& grid) { block = dim3(threads_x, threads_y); grid = dim3(divUp(cols, block.x * block.y), divUp(rows, block.y * block.x)); grid.x = ::min(grid.x, block.x); grid.y = ::min(grid.y, block.y); } void getBufSize(int cols, int rows, size_t elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows) { dim3 block, grid; getLaunchCfg(cols, rows, block, grid); // For values b1cols = (int)(grid.x * grid.y * elem_size); b1rows = 2; // For locations b2cols = grid.x * grid.y * sizeof(int); b2rows = 2; } template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf) { dim3 block, grid; getLaunchCfg(src.cols, src.rows, block, grid); const int twidth = divUp(divUp(src.cols, grid.x), block.x); const int theight = divUp(divUp(src.rows, grid.y), block.y); T* minval_buf = (T*) valbuf.ptr(0); T* maxval_buf = (T*) valbuf.ptr(1); unsigned int* minloc_buf = locbuf.ptr(0); unsigned int* maxloc_buf = locbuf.ptr(1); if (mask.data) kernel_pass_1<<>>((PtrStepSz) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight); else kernel_pass_1<<>>((PtrStepSz) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight); cudaSafeCall( cudaGetLastError() ); kernel_pass_2<<<1, threads_x * threads_y>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); T minval_, maxval_; cudaSafeCall( cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost) ); cudaSafeCall( cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost) ); *minval = minval_; *maxval = maxval_; unsigned int minloc_, maxloc_; cudaSafeCall( cudaMemcpy(&minloc_, minloc_buf, sizeof(unsigned int), cudaMemcpyDeviceToHost) ); cudaSafeCall( cudaMemcpy(&maxloc_, maxloc_buf, sizeof(unsigned int), cudaMemcpyDeviceToHost) ); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); template void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep locbuf); } #endif // CUDA_DISABLER