// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "op_inf_engine.hpp" #include #ifdef HAVE_INF_ENGINE #include #include #endif // HAVE_INF_ENGINE #include #include namespace cv { namespace dnn { #ifdef HAVE_INF_ENGINE // For networks with input layer which has an empty name, IE generates a name id[some_number]. // OpenCV lets users use an empty input name and to prevent unexpected naming, // we can use some predefined name. static std::string kDefaultInpLayerName = "empty_inp_layer_name"; static std::string kOpenCVLayersType = "OpenCVLayer"; static std::string shapesToStr(const std::vector& mats) { std::ostringstream shapes; shapes << mats.size() << " "; for (const Mat& m : mats) { shapes << m.dims << " "; for (int i = 0; i < m.dims; ++i) shapes << m.size[i] << " "; } return shapes.str(); } static void strToShapes(const std::string& str, std::vector >& shapes) { std::istringstream ss(str); int num, dims; ss >> num; shapes.resize(num); for (int i = 0; i < num; ++i) { ss >> dims; shapes[i].resize(dims); for (int j = 0; j < dims; ++j) ss >> shapes[i][j]; } } class InfEngineCustomLayer : public InferenceEngine::ILayerExecImpl { public: explicit InfEngineCustomLayer(const InferenceEngine::CNNLayer& layer) : cnnLayer(layer) { std::istringstream iss(layer.GetParamAsString("impl")); size_t ptr; iss >> ptr; cvLayer = (Layer*)ptr; std::vector > shapes; strToShapes(layer.GetParamAsString("internals"), shapes); internals.resize(shapes.size()); for (int i = 0; i < shapes.size(); ++i) internals[i].create(std::vector(shapes[i].begin(), shapes[i].end()), CV_32F); } virtual InferenceEngine::StatusCode execute(std::vector& inputs, std::vector& outputs, InferenceEngine::ResponseDesc *resp) noexcept { std::vector inpMats, outMats; infEngineBlobsToMats(inputs, inpMats); infEngineBlobsToMats(outputs, outMats); try { cvLayer->forward(inpMats, outMats, internals); return InferenceEngine::StatusCode::OK; } catch (...) { return InferenceEngine::StatusCode::GENERAL_ERROR; } } virtual InferenceEngine::StatusCode getSupportedConfigurations(std::vector& conf, InferenceEngine::ResponseDesc* resp) noexcept { std::vector inDataConfig; std::vector outDataConfig; for (auto& it : cnnLayer.insData) { InferenceEngine::DataConfig conf; conf.desc = it.lock()->getTensorDesc(); inDataConfig.push_back(conf); } for (auto& it : cnnLayer.outData) { InferenceEngine::DataConfig conf; conf.desc = it->getTensorDesc(); outDataConfig.push_back(conf); } InferenceEngine::LayerConfig layerConfig; layerConfig.inConfs = inDataConfig; layerConfig.outConfs = outDataConfig; conf.push_back(layerConfig); return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode init(InferenceEngine::LayerConfig& config, InferenceEngine::ResponseDesc *resp) noexcept { return InferenceEngine::StatusCode::OK; } private: InferenceEngine::CNNLayer cnnLayer; dnn::Layer* cvLayer; std::vector internals; }; class InfEngineCustomLayerShapeInfer : public InferenceEngine::IShapeInferImpl { public: InferenceEngine::StatusCode inferShapes(const std::vector& inBlobs, const std::map& params, const std::map& blobs, std::vector& outShapes, InferenceEngine::ResponseDesc* desc) noexcept override { strToShapes(params.at("outputs"), outShapes); return InferenceEngine::StatusCode::OK; } }; class InfEngineCustomLayerFactory : public InferenceEngine::ILayerImplFactory { public: explicit InfEngineCustomLayerFactory(const InferenceEngine::CNNLayer* layer) : cnnLayer(*layer) {} InferenceEngine::StatusCode getImplementations(std::vector& impls, InferenceEngine::ResponseDesc* resp) noexcept override { impls.push_back(std::make_shared(cnnLayer)); return InferenceEngine::StatusCode::OK; } private: InferenceEngine::CNNLayer cnnLayer; }; class InfEngineExtension : public InferenceEngine::IExtension { public: virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {} virtual void Unload() noexcept {} virtual void Release() noexcept {} virtual void GetVersion(const InferenceEngine::Version*&) const noexcept {} virtual InferenceEngine::StatusCode getPrimitiveTypes(char**&, unsigned int&, InferenceEngine::ResponseDesc*) noexcept { return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode getFactoryFor(InferenceEngine::ILayerImplFactory*& factory, const InferenceEngine::CNNLayer* cnnLayer, InferenceEngine::ResponseDesc* resp) noexcept { if (cnnLayer->type != kOpenCVLayersType) return InferenceEngine::StatusCode::NOT_IMPLEMENTED; factory = new InfEngineCustomLayerFactory(cnnLayer); return InferenceEngine::StatusCode::OK; } }; InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer) : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {} InfEngineBackendNode::InfEngineBackendNode(Ptr& cvLayer_, std::vector& inputs, std::vector& outputs, std::vector& internals) : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(cvLayer_->name), cvLayer(cvLayer_) { CV_Assert(!cvLayer->name.empty()); layer.setName(cvLayer->name); layer.setType(kOpenCVLayersType); layer.getParameters()["impl"] = (size_t)cvLayer.get(); layer.getParameters()["outputs"] = shapesToStr(outputs); layer.getParameters()["internals"] = shapesToStr(internals); layer.setInputPorts(std::vector(inputs.size())); layer.setOutputPorts(std::vector(outputs.size())); } static std::vector > infEngineWrappers(const std::vector >& ptrs) { std::vector > wrappers(ptrs.size()); for (int i = 0; i < ptrs.size(); ++i) { CV_Assert(!ptrs[i].empty()); wrappers[i] = ptrs[i].dynamicCast(); CV_Assert(!wrappers[i].empty()); } return wrappers; } InfEngineBackendNet::InfEngineBackendNet() : netBuilder("") { hasNetOwner = false; device_name = "CPU"; } InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net) { hasNetOwner = true; device_name = "CPU"; } void InfEngineBackendNet::connect(const std::vector >& inputs, const std::vector >& outputs, const std::string& layerName) { std::vector > inpWrappers = infEngineWrappers(inputs); std::map::iterator it = layers.find(layerName); CV_Assert(it != layers.end()); const int layerId = it->second; for (size_t i = 0; i < inpWrappers.size(); ++i) { const auto& inp = inpWrappers[i]; const std::string& inpName = inp->dataPtr->getName(); int inpId; it = layers.find(inpName); if (it == layers.end()) { InferenceEngine::Builder::InputLayer inpLayer(!inpName.empty() ? inpName : kDefaultInpLayerName); std::vector shape(inp->blob->getTensorDesc().getDims()); inpLayer.setPort(InferenceEngine::Port(shape)); inpId = netBuilder.addLayer(inpLayer); layers.insert({inpName, inpId}); } else inpId = it->second; netBuilder.connect((size_t)inpId, {(size_t)layerId, i}); unconnectedLayersIds.erase(inpId); } CV_Assert(!outputs.empty()); InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]); #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) dataPtr->name = layerName; #else dataPtr->setName(layerName); #endif } void InfEngineBackendNet::init(int targetId) { if (!hasNetOwner) { CV_Assert(!unconnectedLayersIds.empty()); for (int id : unconnectedLayersIds) { InferenceEngine::Builder::OutputLayer outLayer("myconv1"); #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) // Inference Engine determines network precision by ports. InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16) ? InferenceEngine::Precision::FP16 : InferenceEngine::Precision::FP32; outLayer.setPort(InferenceEngine::Port({}, p)); #endif netBuilder.addLayer({InferenceEngine::PortInfo(id)}, outLayer); } netBuilder.getContext().addShapeInferImpl(kOpenCVLayersType, std::make_shared()); cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build())); } switch (targetId) { case DNN_TARGET_CPU: device_name = "CPU"; break; case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16: device_name = "GPU"; break; case DNN_TARGET_MYRIAD: device_name = "MYRIAD"; break; case DNN_TARGET_FPGA: device_name = "FPGA"; break; default: CV_Error(Error::StsNotImplemented, "Unknown target"); }; for (const auto& name : requestedOutputs) { cnn.addOutput(name); } for (const auto& it : cnn.getInputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); } for (const auto& it : cnn.getOutputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); // Should be always FP32 } initPlugin(cnn); } void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer) { #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) // Add weights to network and connect them after input blobs. std::map& params = layer.getParameters(); std::vector blobsIds; std::vector portIds; for (const std::string& name : {"weights", "biases"}) { bool asInput = false; int portId = 0; for (int i = 0; i < layer.getInputPorts().size(); ++i) { const auto& port = layer.getInputPorts()[i]; auto it = port.getParameters().find("type"); if (it != port.getParameters().end() && it->second == name) { portId = i; asInput = true; break; } } if (!asInput) continue; auto it = params.find(name); if (it != params.end()) { InferenceEngine::Blob::Ptr blob = it->second.as(); params.erase(it); int blobId = netBuilder.addLayer(InferenceEngine::Builder::ConstLayer(name).setData(blob)); blobsIds.push_back(blobId); portIds.push_back(portId); } } #endif int id = netBuilder.addLayer(layer); const std::string& layerName = layer.getName(); CV_Assert(layers.insert({layerName, id}).second); unconnectedLayersIds.insert(id); #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) // By default, all the weights are connected to last ports ids. for (int i = 0; i < blobsIds.size(); ++i) { netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]}); } #endif } void InfEngineBackendNet::addOutput(const std::string& name) { requestedOutputs.push_back(name); } static InferenceEngine::Layout estimateLayout(const Mat& m) { if (m.dims == 4) return InferenceEngine::Layout::NCHW; else if (m.dims == 2) return InferenceEngine::Layout::NC; else return InferenceEngine::Layout::ANY; } static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "") { std::vector shape(&m.size[0], &m.size[0] + m.dims); if (m.type() == CV_32F) return InferenceEngine::DataPtr(new InferenceEngine::Data(name, {InferenceEngine::Precision::FP32, shape, estimateLayout(m)})); else if (m.type() == CV_8U) return InferenceEngine::DataPtr(new InferenceEngine::Data(name, {InferenceEngine::Precision::U8, shape, estimateLayout(m)})); else CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type())); } InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector& shape, InferenceEngine::Layout layout) { if (m.type() == CV_32F) return InferenceEngine::make_shared_blob( {InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data); else if (m.type() == CV_8U) return InferenceEngine::make_shared_blob( {InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data); else CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type())); } InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout) { std::vector shape(&m.size[0], &m.size[0] + m.dims); return wrapToInfEngineBlob(m, shape, layout); } InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob) { InferenceEngine::Blob::Ptr copy; auto description = blob->getTensorDesc(); InferenceEngine::Precision precision = description.getPrecision(); if (precision == InferenceEngine::Precision::FP32) { copy = InferenceEngine::make_shared_blob(description); } else if (precision == InferenceEngine::Precision::U8) { copy = InferenceEngine::make_shared_blob(description); } else CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); copy->allocate(); return copy; } InferenceEngine::DataPtr infEngineDataNode(const Ptr& ptr) { CV_Assert(!ptr.empty()); Ptr p = ptr.dynamicCast(); CV_Assert(!p.empty()); return p->dataPtr; } InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m) : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId) { dataPtr = wrapToInfEngineDataNode(m); blob = wrapToInfEngineBlob(m, estimateLayout(m)); } InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr wrapper) : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId) { Ptr ieWrapper = wrapper.dynamicCast(); CV_Assert(!ieWrapper.empty()); InferenceEngine::DataPtr srcData = ieWrapper->dataPtr; dataPtr = InferenceEngine::DataPtr(new InferenceEngine::Data(srcData->getName(), srcData->getTensorDesc())); blob = ieWrapper->blob; } Ptr InfEngineBackendWrapper::create(Ptr wrapper) { return Ptr(new InfEngineBackendWrapper(wrapper)); } InfEngineBackendWrapper::~InfEngineBackendWrapper() { } void InfEngineBackendWrapper::copyToHost() { } void InfEngineBackendWrapper::setHostDirty() { } #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) static std::map& getSharedPlugins() { static std::map sharedPlugins; return sharedPlugins; } #else static InferenceEngine::Core& getCore() { static InferenceEngine::Core core; return core; } #endif #if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) static bool detectMyriadX_() { InferenceEngine::Builder::Network builder(""); InferenceEngine::idx_t inpId = builder.addLayer( InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1}))); #if INF_ENGINE_RELEASE <= 2018050000 InferenceEngine::idx_t clampId; { InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ClampLayer(); auto& blobs = l.getConstantData(); auto blob = InferenceEngine::make_shared_blob( InferenceEngine::Precision::FP16, InferenceEngine::Layout::C, {1}); blob->allocate(); blobs[""] = blob; clampId = builder.addLayer({inpId}, l); } builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer()); #else InferenceEngine::idx_t clampId = builder.addLayer({inpId}, InferenceEngine::Builder::ClampLayer()); builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer().setPort(InferenceEngine::Port({}, InferenceEngine::Precision::FP16))); #endif InferenceEngine::CNNNetwork cnn = InferenceEngine::CNNNetwork( InferenceEngine::Builder::convertToICNNNetwork(builder.build())); #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) InferenceEngine::InferenceEnginePluginPtr enginePtr; { AutoLock lock(getInitializationMutex()); auto& sharedPlugins = getSharedPlugins(); auto pluginIt = sharedPlugins.find("MYRIAD"); if (pluginIt != sharedPlugins.end()) { enginePtr = pluginIt->second; } else { auto dispatcher = InferenceEngine::PluginDispatcher({""}); enginePtr = dispatcher.getPluginByDevice("MYRIAD"); sharedPlugins["MYRIAD"] = enginePtr; } } auto plugin = InferenceEngine::InferencePlugin(enginePtr); try { auto netExec = plugin.LoadNetwork(cnn, {{"VPU_PLATFORM", "VPU_2480"}}); #else try { auto netExec = getCore().LoadNetwork(cnn, "MYRIAD", {{"VPU_PLATFORM", "VPU_2480"}}); #endif auto infRequest = netExec.CreateInferRequest(); } catch(...) { return false; } return true; } #endif // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) void InfEngineBackendNet::initPlugin(InferenceEngine::CNNNetwork& net) { CV_Assert(!isInitialized()); try { AutoLock lock(getInitializationMutex()); #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) auto& sharedPlugins = getSharedPlugins(); auto pluginIt = sharedPlugins.find(device_name); if (pluginIt != sharedPlugins.end()) { enginePtr = pluginIt->second; } else #else InferenceEngine::Core& ie = getCore(); #endif { #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) auto dispatcher = InferenceEngine::PluginDispatcher({""}); if (device_name == "FPGA") enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU"); else enginePtr = dispatcher.getPluginByDevice(device_name); sharedPlugins[device_name] = enginePtr; #else isInit = true; #endif std::vector candidates; std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", ""); if (!param_pluginPath.empty()) { candidates.push_back(param_pluginPath); } #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3) if (device_name == "CPU" || device_name == "FPGA") { std::string suffixes[] = {"_avx2", "_sse4", ""}; bool haveFeature[] = { checkHardwareSupport(CPU_AVX2), checkHardwareSupport(CPU_SSE4_2), true }; for (int i = 0; i < 3; ++i) { if (!haveFeature[i]) continue; #ifdef _WIN32 candidates.push_back("cpu_extension" + suffixes[i] + ".dll"); #elif defined(__APPLE__) candidates.push_back("libcpu_extension" + suffixes[i] + ".so"); // built as loadable module candidates.push_back("libcpu_extension" + suffixes[i] + ".dylib"); // built as shared library #else candidates.push_back("libcpu_extension" + suffixes[i] + ".so"); #endif // _WIN32 } } #endif bool found = false; for (size_t i = 0; i != candidates.size(); ++i) { const std::string& libName = candidates[i]; try { InferenceEngine::IExtensionPtr extension = InferenceEngine::make_so_pointer(libName); #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) enginePtr->AddExtension(extension, 0); #else ie.AddExtension(extension, "CPU"); // OpenCV fallbacks as extensions. ie.AddExtension(std::make_shared(), "CPU"); #endif CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName); found = true; break; } catch(...) {} } if (!found && !candidates.empty()) { CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter"); } // Some of networks can work without a library of extra layers. #ifndef _WIN32 // Limit the number of CPU threads. #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) enginePtr->SetConfig({{ InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()), }}, 0); #else if (device_name == "CPU") ie.SetConfig({{ InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()), }}, device_name); #endif #endif } #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) plugin = InferenceEngine::InferencePlugin(enginePtr); netExec = plugin.LoadNetwork(net, {}); #else bool isHetero = false; if (device_name != "CPU") { isHetero = device_name == "FPGA"; for (auto& layer : net) { if (layer->type == kOpenCVLayersType) { layer->affinity = "CPU"; isHetero = true; } else layer->affinity = device_name; } } if (isHetero) netExec = ie.LoadNetwork(net, "HETERO:" + device_name + ",CPU"); else netExec = ie.LoadNetwork(net, device_name); #endif } catch (const std::exception& ex) { CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); } } bool InfEngineBackendNet::isInitialized() { #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) return (bool)enginePtr; #else return isInit; #endif } void InfEngineBackendNet::addBlobs(const std::vector >& ptrs) { auto wrappers = infEngineWrappers(ptrs); for (const auto& wrapper : wrappers) { std::string name = wrapper->dataPtr->getName(); name = name.empty() ? kDefaultInpLayerName : name; allBlobs.insert({name, wrapper->blob}); } } void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector >& outsWrappers) { auto outs = infEngineWrappers(outsWrappers); outProms.clear(); outProms.resize(outs.size()); outsNames.resize(outs.size()); for (int i = 0; i < outs.size(); ++i) { outs[i]->futureMat = outProms[i].getArrayResult(); outsNames[i] = outs[i]->dataPtr->getName(); } } void InfEngineBackendNet::forward(const std::vector >& outBlobsWrappers, bool isAsync) { // Look for finished requests. Ptr reqWrapper; for (auto& wrapper : infRequests) { if (wrapper->isReady) { reqWrapper = wrapper; break; } } if (reqWrapper.empty()) { reqWrapper = Ptr(new InfEngineReqWrapper()); try { reqWrapper->req = netExec.CreateInferRequest(); } catch (const std::exception& ex) { CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); } infRequests.push_back(reqWrapper); InferenceEngine::BlobMap inpBlobs, outBlobs; for (const auto& it : cnn.getInputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second; } for (const auto& it : cnn.getOutputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second; } reqWrapper->req.SetInput(inpBlobs); reqWrapper->req.SetOutput(outBlobs); InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req; infRequestPtr->SetUserData(reqWrapper.get(), 0); infRequestPtr->SetCompletionCallback( [](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status) { InfEngineReqWrapper* wrapper; request->GetUserData((void**)&wrapper, 0); CV_Assert(wrapper && "Internal error"); size_t processedOutputs = 0; try { for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) { const std::string& name = wrapper->outsNames[processedOutputs]; Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name)); try { CV_Assert(status == InferenceEngine::StatusCode::OK); wrapper->outProms[processedOutputs].setValue(m.clone()); } catch (...) { try { wrapper->outProms[processedOutputs].setException(std::current_exception()); } catch(...) { CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation"); } } } } catch (...) { std::exception_ptr e = std::current_exception(); for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs) { try { wrapper->outProms[processedOutputs].setException(e); } catch(...) { CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation"); } } } wrapper->isReady = true; } ); } if (isAsync) { // Copy actual data to infer request's input blobs. for (const auto& it : cnn.getInputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); Mat srcMat = infEngineBlobToMat(blobIt->second); Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name)); srcMat.copyTo(dstMat); } // Set promises to output blobs wrappers. reqWrapper->makePromises(outBlobsWrappers); reqWrapper->isReady = false; reqWrapper->req.StartAsync(); } else { reqWrapper->req.Infer(); } } Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) { // NOTE: Inference Engine sizes are reversed. std::vector dims = blob->getTensorDesc().getDims(); std::vector size(dims.begin(), dims.end()); auto precision = blob->getTensorDesc().getPrecision(); int type = -1; switch (precision) { case InferenceEngine::Precision::FP32: type = CV_32F; break; case InferenceEngine::Precision::U8: type = CV_8U; break; default: CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); } return Mat(size, type, (void*)blob->buffer()); } void infEngineBlobsToMats(const std::vector& blobs, std::vector& mats) { mats.resize(blobs.size()); for (int i = 0; i < blobs.size(); ++i) mats[i] = infEngineBlobToMat(blobs[i]); } bool InfEngineBackendLayer::getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes(); InferenceEngine::ICNNNetwork::InputShapes::iterator itr; bool equal_flag = true; size_t i = 0; for (itr = inShapes.begin(); itr != inShapes.end(); ++itr) { InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end()); if (itr->second != currentInShape) { itr->second = currentInShape; equal_flag = false; } i++; } if (!equal_flag) { InferenceEngine::CNNNetwork curr_t_net(t_net); curr_t_net.reshape(inShapes); } std::vector dims = t_net.getOutputsInfo()[name]->getDims(); outputs.push_back(MatShape(dims.begin(), dims.end())); return false; } bool InfEngineBackendLayer::supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || (backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine()); } void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) { CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend."); } InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob) { auto halfs = InferenceEngine::make_shared_blob({ InferenceEngine::Precision::FP16, blob->getTensorDesc().getDims(), blob->getTensorDesc().getLayout() }); halfs->allocate(); Mat floatsData(1, blob->size(), CV_32F, blob->buffer()); Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer()); convertFp16(floatsData, halfsData); return halfs; } void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data, InferenceEngine::Builder::Layer& l) { #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) l.getParameters()[name] = data; #else l.addConstantData(name, data); #endif } #endif // HAVE_INF_ENGINE bool haveInfEngine() { #ifdef HAVE_INF_ENGINE return true; #else return false; #endif // HAVE_INF_ENGINE } void forwardInfEngine(const std::vector >& outBlobsWrappers, Ptr& node, bool isAsync) { CV_Assert(haveInfEngine()); #ifdef HAVE_INF_ENGINE CV_Assert(!node.empty()); Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); ieNode->net->forward(outBlobsWrappers, isAsync); #endif // HAVE_INF_ENGINE } CV__DNN_EXPERIMENTAL_NS_BEGIN void resetMyriadDevice() { #ifdef HAVE_INF_ENGINE AutoLock lock(getInitializationMutex()); #if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R1) getSharedPlugins().erase("MYRIAD"); #else // To unregister both "MYRIAD" and "HETERO:MYRIAD,CPU" plugins getCore() = InferenceEngine::Core(); #endif #endif // HAVE_INF_ENGINE } #ifdef HAVE_INF_ENGINE bool isMyriadX() { static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X; return myriadX; } static std::string getInferenceEngineVPUType_() { static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", ""); if (param_vpu_type == "") { #if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT; #else CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter"); try { bool isMyriadX_ = detectMyriadX_(); if (isMyriadX_) { param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X; } else { param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2; } } catch (...) { CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter."); param_vpu_type.clear(); } #endif } CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'"); return param_vpu_type; } cv::String getInferenceEngineVPUType() { static cv::String vpu_type = getInferenceEngineVPUType_(); return vpu_type; } #else // HAVE_INF_ENGINE cv::String getInferenceEngineVPUType() { CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support"); } #endif // HAVE_INF_ENGINE CV__DNN_EXPERIMENTAL_NS_END }} // namespace dnn, namespace cv