// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" #include "stat.hpp" #if defined HAVE_IPP namespace cv { static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret ) { CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 >= 700 size_t total_size = src.total(); int cn = src.channels(); if (cn > 4) return false; int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) { IppiSize sz = { cols, rows }; int type = src.type(); if( !mask.empty() ) { typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); ippiMaskMeanFuncC1 ippiMean_C1MR = type == CV_8UC1 ? (ippiMaskMeanFuncC1)ippiMean_8u_C1MR : type == CV_16UC1 ? (ippiMaskMeanFuncC1)ippiMean_16u_C1MR : type == CV_32FC1 ? (ippiMaskMeanFuncC1)ippiMean_32f_C1MR : 0; if( ippiMean_C1MR ) { Ipp64f res; if( CV_INSTRUMENT_FUN_IPP(ippiMean_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &res) >= 0 ) { ret = Scalar(res); return true; } } typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); ippiMaskMeanFuncC3 ippiMean_C3MR = type == CV_8UC3 ? (ippiMaskMeanFuncC3)ippiMean_8u_C3CMR : type == CV_16UC3 ? (ippiMaskMeanFuncC3)ippiMean_16u_C3CMR : type == CV_32FC3 ? (ippiMaskMeanFuncC3)ippiMean_32f_C3CMR : 0; if( ippiMean_C3MR ) { Ipp64f res1, res2, res3; if( CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &res1) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &res2) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &res3) >= 0 ) { ret = Scalar(res1, res2, res3); return true; } } } else { typedef IppStatus (CV_STDCALL* ippiMeanFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm); typedef IppStatus (CV_STDCALL* ippiMeanFuncNoHint)(const void*, int, IppiSize, double *); ippiMeanFuncHint ippiMeanHint = type == CV_32FC1 ? (ippiMeanFuncHint)ippiMean_32f_C1R : type == CV_32FC3 ? (ippiMeanFuncHint)ippiMean_32f_C3R : type == CV_32FC4 ? (ippiMeanFuncHint)ippiMean_32f_C4R : 0; ippiMeanFuncNoHint ippiMean = type == CV_8UC1 ? (ippiMeanFuncNoHint)ippiMean_8u_C1R : type == CV_8UC3 ? (ippiMeanFuncNoHint)ippiMean_8u_C3R : type == CV_8UC4 ? (ippiMeanFuncNoHint)ippiMean_8u_C4R : type == CV_16UC1 ? (ippiMeanFuncNoHint)ippiMean_16u_C1R : type == CV_16UC3 ? (ippiMeanFuncNoHint)ippiMean_16u_C3R : type == CV_16UC4 ? (ippiMeanFuncNoHint)ippiMean_16u_C4R : type == CV_16SC1 ? (ippiMeanFuncNoHint)ippiMean_16s_C1R : type == CV_16SC3 ? (ippiMeanFuncNoHint)ippiMean_16s_C3R : type == CV_16SC4 ? (ippiMeanFuncNoHint)ippiMean_16s_C4R : 0; // Make sure only zero or one version of the function pointer is valid CV_Assert(!ippiMeanHint || !ippiMean); if( ippiMeanHint || ippiMean ) { Ipp64f res[4]; IppStatus status = ippiMeanHint ? CV_INSTRUMENT_FUN_IPP(ippiMeanHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiMean, src.ptr(), (int)src.step[0], sz, res); if( status >= 0 ) { for( int i = 0; i < cn; i++ ) ret[i] = res[i]; return true; } } } } return false; #else return false; #endif } } #endif cv::Scalar cv::mean( InputArray _src, InputArray _mask ) { CV_INSTRUMENT_REGION() Mat src = _src.getMat(), mask = _mask.getMat(); CV_Assert( mask.empty() || mask.type() == CV_8U ); int k, cn = src.channels(), depth = src.depth(); Scalar s; CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_mean(src, mask, s), s) SumFunc func = getSumFunc(depth); CV_Assert( cn <= 4 && func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0; AutoBuffer _buf; int* buf = (int*)&s[0]; bool blockSum = depth <= CV_16S; size_t esz = 0, nz0 = 0; if( blockSum ) { intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); blockSize = std::min(blockSize, intSumBlockSize); _buf.allocate(cn); buf = _buf.data(); for( k = 0; k < cn; k++ ) buf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn ); count += nz; nz0 += nz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += buf[k]; buf[k] = 0; } count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } return s*(nz0 ? 1./nz0 : 0); } //================================================================================================== namespace cv { template struct SumSqr_SIMD { int operator () (const T *, const uchar *, ST *, SQT *, int, int) const { return 0; } }; template inline void addSqrChannels(T * sum, T * sqsum, T * buf, int cn) { for (int i = 0; i < 4; ++i) { sum[i % cn] += buf[i]; sqsum[i % cn] += buf[4 + i]; } } #if CV_SSE2 template <> struct SumSqr_SIMD { int operator () (const uchar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const { if (mask || (cn != 1 && cn != 2) || !USE_SSE2) return 0; int x = 0; __m128i v_zero = _mm_setzero_si128(), v_sum = v_zero, v_sqsum = v_zero; const int len_16 = len & ~15; for ( ; x <= len_16 - 16; ) { const int len_tmp = min(x + 2048, len_16); __m128i v_sum_tmp = v_zero; for ( ; x <= len_tmp - 16; x += 16) { __m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); __m128i v_half_0 = _mm_unpacklo_epi8(v_src, v_zero); __m128i v_half_1 = _mm_unpackhi_epi8(v_src, v_zero); v_sum_tmp = _mm_add_epi16(v_sum_tmp, _mm_add_epi16(v_half_0, v_half_1)); __m128i v_half_2 = _mm_unpacklo_epi16(v_half_0, v_half_1); __m128i v_half_3 = _mm_unpackhi_epi16(v_half_0, v_half_1); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_2, v_half_2)); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_3, v_half_3)); } v_sum = _mm_add_epi32(v_sum, _mm_unpacklo_epi16(v_sum_tmp, v_zero)); v_sum = _mm_add_epi32(v_sum, _mm_unpackhi_epi16(v_sum_tmp, v_zero)); } for ( ; x <= len - 8; x += 8) { __m128i v_src = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i const *)(src0 + x)), v_zero); __m128i v_half_0 = _mm_unpackhi_epi64(v_src, v_src); __m128i v_sum_tmp = _mm_add_epi16(v_src, v_half_0); __m128i v_half_1 = _mm_unpacklo_epi16(v_src, v_half_0); v_sum = _mm_add_epi32(v_sum, _mm_unpacklo_epi16(v_sum_tmp, v_zero)); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_1, v_half_1)); } int CV_DECL_ALIGNED(16) ar[8]; _mm_store_si128((__m128i*)ar, v_sum); _mm_store_si128((__m128i*)(ar + 4), v_sqsum); addSqrChannels(sum, sqsum, ar, cn); return x / cn; } }; template <> struct SumSqr_SIMD { int operator () (const schar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const { if (mask || (cn != 1 && cn != 2) || !USE_SSE2) return 0; int x = 0; __m128i v_zero = _mm_setzero_si128(), v_sum = v_zero, v_sqsum = v_zero; const int len_16 = len & ~15; for ( ; x <= len_16 - 16; ) { const int len_tmp = min(x + 2048, len_16); __m128i v_sum_tmp = v_zero; for ( ; x <= len_tmp - 16; x += 16) { __m128i v_src = _mm_loadu_si128((const __m128i *)(src0 + x)); __m128i v_half_0 = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, v_src), 8); __m128i v_half_1 = _mm_srai_epi16(_mm_unpackhi_epi8(v_zero, v_src), 8); v_sum_tmp = _mm_add_epi16(v_sum_tmp, _mm_add_epi16(v_half_0, v_half_1)); __m128i v_half_2 = _mm_unpacklo_epi16(v_half_0, v_half_1); __m128i v_half_3 = _mm_unpackhi_epi16(v_half_0, v_half_1); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_2, v_half_2)); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_3, v_half_3)); } v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_sum_tmp), 16)); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpackhi_epi16(v_zero, v_sum_tmp), 16)); } for ( ; x <= len - 8; x += 8) { __m128i v_src = _mm_srai_epi16(_mm_unpacklo_epi8(v_zero, _mm_loadl_epi64((__m128i const *)(src0 + x))), 8); __m128i v_half_0 = _mm_unpackhi_epi64(v_src, v_src); __m128i v_sum_tmp = _mm_add_epi16(v_src, v_half_0); __m128i v_half_1 = _mm_unpacklo_epi16(v_src, v_half_0); v_sum = _mm_add_epi32(v_sum, _mm_srai_epi32(_mm_unpacklo_epi16(v_zero, v_sum_tmp), 16)); v_sqsum = _mm_add_epi32(v_sqsum, _mm_madd_epi16(v_half_1, v_half_1)); } int CV_DECL_ALIGNED(16) ar[8]; _mm_store_si128((__m128i*)ar, v_sum); _mm_store_si128((__m128i*)(ar + 4), v_sqsum); addSqrChannels(sum, sqsum, ar, cn); return x / cn; } }; #endif template static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn ) { const T* src = src0; if( !mask ) { SumSqr_SIMD vop; int x = vop(src0, mask, sum, sqsum, len, cn), k = cn % 4; src = src0 + x * cn; if( k == 1 ) { ST s0 = sum[0]; SQT sq0 = sqsum[0]; for(int i = x; i < len; i++, src += cn ) { T v = src[0]; s0 += v; sq0 += (SQT)v*v; } sum[0] = s0; sqsum[0] = sq0; } else if( k == 2 ) { ST s0 = sum[0], s1 = sum[1]; SQT sq0 = sqsum[0], sq1 = sqsum[1]; for(int i = x; i < len; i++, src += cn ) { T v0 = src[0], v1 = src[1]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; } sum[0] = s0; sum[1] = s1; sqsum[0] = sq0; sqsum[1] = sq1; } else if( k == 3 ) { ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; for(int i = x; i < len; i++, src += cn ) { T v0 = src[0], v1 = src[1], v2 = src[2]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; s2 += v2; sq2 += (SQT)v2*v2; } sum[0] = s0; sum[1] = s1; sum[2] = s2; sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; } for( ; k < cn; k += 4 ) { src = src0 + x * cn + k; ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3]; SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3]; for(int i = x; i < len; i++, src += cn ) { T v0, v1; v0 = src[0], v1 = src[1]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; v0 = src[2], v1 = src[3]; s2 += v0; sq2 += (SQT)v0*v0; s3 += v1; sq3 += (SQT)v1*v1; } sum[k] = s0; sum[k+1] = s1; sum[k+2] = s2; sum[k+3] = s3; sqsum[k] = sq0; sqsum[k+1] = sq1; sqsum[k+2] = sq2; sqsum[k+3] = sq3; } return len; } int i, nzm = 0; if( cn == 1 ) { ST s0 = sum[0]; SQT sq0 = sqsum[0]; for( i = 0; i < len; i++ ) if( mask[i] ) { T v = src[i]; s0 += v; sq0 += (SQT)v*v; nzm++; } sum[0] = s0; sqsum[0] = sq0; } else if( cn == 3 ) { ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; for( i = 0; i < len; i++, src += 3 ) if( mask[i] ) { T v0 = src[0], v1 = src[1], v2 = src[2]; s0 += v0; sq0 += (SQT)v0*v0; s1 += v1; sq1 += (SQT)v1*v1; s2 += v2; sq2 += (SQT)v2*v2; nzm++; } sum[0] = s0; sum[1] = s1; sum[2] = s2; sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; } else { for( i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { T v = src[k]; ST s = sum[k] + v; SQT sq = sqsum[k] + (SQT)v*v; sum[k] = s; sqsum[k] = sq; } nzm++; } } return nzm; } static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) { return sumsqr_(src, mask, sum, sqsum, len, cn); } typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int); static SumSqrFunc getSumSqrTab(int depth) { static SumSqrFunc sumSqrTab[] = { (SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s, (SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0 }; return sumSqrTab[depth]; } #ifdef HAVE_OPENCL static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) { CV_INSTRUMENT_REGION_OPENCL() bool haveMask = _mask.kind() != _InputArray::NONE; int nz = haveMask ? -1 : (int)_src.total(); Scalar mean(0), stddev(0); const int cn = _src.channels(); if (cn > 4) return false; { int type = _src.type(), depth = CV_MAT_DEPTH(type); bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0, isContinuous = _src.isContinuous(), isMaskContinuous = _mask.isContinuous(); const ocl::Device &defDev = ocl::Device::getDefault(); int groups = defDev.maxComputeUnits(); if (defDev.isIntel()) { static const int subSliceEUCount = 10; groups = (groups / subSliceEUCount) * 2; } size_t wgs = defDev.maxWorkGroupSize(); int ddepth = std::max(CV_32S, depth), sqddepth = std::max(CV_32F, depth), dtype = CV_MAKE_TYPE(ddepth, cn), sqdtype = CV_MAKETYPE(sqddepth, cn); CV_Assert(!haveMask || _mask.type() == CV_8UC1); int wgs2_aligned = 1; while (wgs2_aligned < (int)wgs) wgs2_aligned <<= 1; wgs2_aligned >>= 1; if ( (!doubleSupport && depth == CV_64F) ) return false; char cvt[2][40]; String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D sqddepth=%d" " -D sqdstT=%s -D sqdstT1=%s -D convertToSDT=%s -D cn=%d%s%s" " -D convertToDT=%s -D WGS=%d -D WGS2_ALIGNED=%d%s%s", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(dtype), ocl::typeToStr(ddepth), sqddepth, ocl::typeToStr(sqdtype), ocl::typeToStr(sqddepth), ocl::convertTypeStr(depth, sqddepth, cn, cvt[0]), cn, isContinuous ? " -D HAVE_SRC_CONT" : "", isMaskContinuous ? " -D HAVE_MASK_CONT" : "", ocl::convertTypeStr(depth, ddepth, cn, cvt[1]), (int)wgs, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "", doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel k("meanStdDev", ocl::core::meanstddev_oclsrc, opts); if (k.empty()) return false; int dbsize = groups * ((haveMask ? CV_ELEM_SIZE1(CV_32S) : 0) + CV_ELEM_SIZE(sqdtype) + CV_ELEM_SIZE(dtype)); UMat src = _src.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dbarg = ocl::KernelArg::PtrWriteOnly(db), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask); if (haveMask) k.args(srcarg, src.cols, (int)src.total(), groups, dbarg, maskarg); else k.args(srcarg, src.cols, (int)src.total(), groups, dbarg); size_t globalsize = groups * wgs; if(!k.run(1, &globalsize, &wgs, false)) return false; typedef Scalar (* part_sum)(Mat m); part_sum funcs[3] = { ocl_part_sum, ocl_part_sum, ocl_part_sum }; Mat dbm = db.getMat(ACCESS_READ); mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.ptr())); stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.ptr() + groups * CV_ELEM_SIZE(dtype))); if (haveMask) nz = saturate_cast(funcs[0](Mat(1, groups, CV_32SC1, dbm.ptr() + groups * (CV_ELEM_SIZE(dtype) + CV_ELEM_SIZE(sqdtype))))[0]); } double total = nz != 0 ? 1.0 / nz : 0; int k, j; for (int i = 0; i < cn; ++i) { mean[i] *= total; stddev[i] = std::sqrt(std::max(stddev[i] * total - mean[i] * mean[i] , 0.)); } for( j = 0; j < 2; j++ ) { const double * const sptr = j == 0 ? &mean[0] : &stddev[0]; _OutputArray _dst = j == 0 ? _mean : _sdv; if( !_dst.needed() ) continue; if( !_dst.fixedSize() ) _dst.create(cn, 1, CV_64F, -1, true); Mat dst = _dst.getMat(); int dcn = (int)dst.total(); CV_Assert( dst.type() == CV_64F && dst.isContinuous() && (dst.cols == 1 || dst.rows == 1) && dcn >= cn ); double* dptr = dst.ptr(); for( k = 0; k < cn; k++ ) dptr[k] = sptr[k]; for( ; k < dcn; k++ ) dptr[k] = 0; } return true; } #endif #ifdef HAVE_OPENVX static bool openvx_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask) { size_t total_size = src.total(); int rows = src.size[0], cols = rows ? (int)(total_size / rows) : 0; if (src.type() != CV_8UC1|| !mask.empty() || (src.dims != 2 && !(src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size)) ) return false; try { ivx::Context ctx = ovx::getOpenVXContext(); #ifndef VX_VERSION_1_1 if (ctx.vendorID() == VX_ID_KHRONOS) return false; // Do not use OpenVX meanStdDev estimation for sample 1.0.1 implementation due to lack of accuracy #endif ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(cols, rows, 1, (vx_int32)(src.step[0])), src.ptr()); vx_float32 mean_temp, stddev_temp; ivx::IVX_CHECK_STATUS(vxuMeanStdDev(ctx, ia, &mean_temp, &stddev_temp)); if (_mean.needed()) { if (!_mean.fixedSize()) _mean.create(1, 1, CV_64F, -1, true); Mat mean = _mean.getMat(); CV_Assert(mean.type() == CV_64F && mean.isContinuous() && (mean.cols == 1 || mean.rows == 1) && mean.total() >= 1); double *pmean = mean.ptr(); pmean[0] = mean_temp; for (int c = 1; c < (int)mean.total(); c++) pmean[c] = 0; } if (_sdv.needed()) { if (!_sdv.fixedSize()) _sdv.create(1, 1, CV_64F, -1, true); Mat stddev = _sdv.getMat(); CV_Assert(stddev.type() == CV_64F && stddev.isContinuous() && (stddev.cols == 1 || stddev.rows == 1) && stddev.total() >= 1); double *pstddev = stddev.ptr(); pstddev[0] = stddev_temp; for (int c = 1; c < (int)stddev.total(); c++) pstddev[c] = 0; } } catch (ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } #endif #ifdef HAVE_IPP static bool ipp_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask) { CV_INSTRUMENT_REGION_IPP() #if IPP_VERSION_X100 >= 700 int cn = src.channels(); #if IPP_VERSION_X100 < 201801 // IPP_DISABLE: C3C functions can read outside of allocated memory if (cn > 1) return false; #endif size_t total_size = src.total(); int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) ) { Ipp64f mean_temp[3]; Ipp64f stddev_temp[3]; Ipp64f *pmean = &mean_temp[0]; Ipp64f *pstddev = &stddev_temp[0]; Mat mean, stddev; int dcn_mean = -1; if( _mean.needed() ) { if( !_mean.fixedSize() ) _mean.create(cn, 1, CV_64F, -1, true); mean = _mean.getMat(); dcn_mean = (int)mean.total(); pmean = mean.ptr(); } int dcn_stddev = -1; if( _sdv.needed() ) { if( !_sdv.fixedSize() ) _sdv.create(cn, 1, CV_64F, -1, true); stddev = _sdv.getMat(); dcn_stddev = (int)stddev.total(); pstddev = stddev.ptr(); } for( int c = cn; c < dcn_mean; c++ ) pmean[c] = 0; for( int c = cn; c < dcn_stddev; c++ ) pstddev[c] = 0; IppiSize sz = { cols, rows }; int type = src.type(); if( !mask.empty() ) { typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *, Ipp64f *); ippiMaskMeanStdDevFuncC1 ippiMean_StdDev_C1MR = type == CV_8UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_8u_C1MR : type == CV_16UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_16u_C1MR : type == CV_32FC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_32f_C1MR : 0; if( ippiMean_StdDev_C1MR ) { if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, pmean, pstddev) >= 0 ) { return true; } } typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *, Ipp64f *); ippiMaskMeanStdDevFuncC3 ippiMean_StdDev_C3CMR = type == CV_8UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CMR : type == CV_16UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CMR : type == CV_32FC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CMR : 0; if( ippiMean_StdDev_C3CMR ) { if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 ) { return true; } } } else { typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC1)(const void *, int, IppiSize, Ipp64f *, Ipp64f *); ippiMeanStdDevFuncC1 ippiMean_StdDev_C1R = type == CV_8UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_8u_C1R : type == CV_16UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_16u_C1R : #if (IPP_VERSION_X100 >= 810) type == CV_32FC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_32f_C1R ://Aug 2013: bug in IPP 7.1, 8.0 #endif 0; if( ippiMean_StdDev_C1R ) { if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1R, src.ptr(), (int)src.step[0], sz, pmean, pstddev) >= 0 ) { return true; } } typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC3)(const void *, int, IppiSize, int, Ipp64f *, Ipp64f *); ippiMeanStdDevFuncC3 ippiMean_StdDev_C3CR = type == CV_8UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CR : type == CV_16UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CR : type == CV_32FC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CR : 0; if( ippiMean_StdDev_C3CR ) { if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 ) { return true; } } } } #else CV_UNUSED(src); CV_UNUSED(_mean); CV_UNUSED(_sdv); CV_UNUSED(mask); #endif return false; } #endif } // cv:: void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) { CV_INSTRUMENT_REGION() CV_Assert(!_src.empty()); CV_Assert( _mask.empty() || _mask.type() == CV_8UC1 ); CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, ocl_meanStdDev(_src, _mean, _sdv, _mask)) Mat src = _src.getMat(), mask = _mask.getMat(); CV_OVX_RUN(!ovx::skipSmallImages(src.cols, src.rows), openvx_meanStdDev(src, _mean, _sdv, mask)) CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_meanStdDev(src, _mean, _sdv, mask)); int k, cn = src.channels(), depth = src.depth(); SumSqrFunc func = getSumSqrTab(depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, blockSize = total, intSumBlockSize = 0; int j, count = 0, nz0 = 0; AutoBuffer _buf(cn*4); double *s = (double*)_buf.data(), *sq = s + cn; int *sbuf = (int*)s, *sqbuf = (int*)sq; bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S; size_t esz = 0; for( k = 0; k < cn; k++ ) s[k] = sq[k] = 0; if( blockSum ) { intSumBlockSize = 1 << 15; blockSize = std::min(blockSize, intSumBlockSize); sbuf = (int*)(sq + cn); if( blockSqSum ) sqbuf = sbuf + cn; for( k = 0; k < cn; k++ ) sbuf[k] = sqbuf[k] = 0; esz = src.elemSize(); } for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( j = 0; j < total; j += blockSize ) { int bsz = std::min(total - j, blockSize); int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn ); count += nz; nz0 += nz; if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) { for( k = 0; k < cn; k++ ) { s[k] += sbuf[k]; sbuf[k] = 0; } if( blockSqSum ) { for( k = 0; k < cn; k++ ) { sq[k] += sqbuf[k]; sqbuf[k] = 0; } } count = 0; } ptrs[0] += bsz*esz; if( ptrs[1] ) ptrs[1] += bsz; } } double scale = nz0 ? 1./nz0 : 0.; for( k = 0; k < cn; k++ ) { s[k] *= scale; sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.)); } for( j = 0; j < 2; j++ ) { const double* sptr = j == 0 ? s : sq; _OutputArray _dst = j == 0 ? _mean : _sdv; if( !_dst.needed() ) continue; if( !_dst.fixedSize() ) _dst.create(cn, 1, CV_64F, -1, true); Mat dst = _dst.getMat(); int dcn = (int)dst.total(); CV_Assert( dst.type() == CV_64F && dst.isContinuous() && (dst.cols == 1 || dst.rows == 1) && dcn >= cn ); double* dptr = dst.ptr(); for( k = 0; k < cn; k++ ) dptr[k] = sptr[k]; for( ; k < dcn; k++ ) dptr[k] = 0; } }