/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) void cv::cuda::calcHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); } void cv::cuda::equalizeHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); } cv::Ptr cv::cuda::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr(); } void cv::cuda::evenLevels(OutputArray, int, int, int, Stream&) { throw_no_cuda(); } void cv::cuda::histEven(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); } void cv::cuda::histEven(InputArray, GpuMat*, int*, int*, int*, Stream&) { throw_no_cuda(); } void cv::cuda::histRange(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); } void cv::cuda::histRange(InputArray, GpuMat*, const GpuMat*, Stream&) { throw_no_cuda(); } #else /* !defined (HAVE_CUDA) */ //////////////////////////////////////////////////////////////////////// // calcHist namespace hist { void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream); void histogram256(PtrStepSzb src, PtrStepSzb mask, int* hist, cudaStream_t stream); } void cv::cuda::calcHist(InputArray _src, OutputArray _hist, Stream& stream) { calcHist(_src, cv::cuda::GpuMat(), _hist, stream); } void cv::cuda::calcHist(InputArray _src, InputArray _mask, OutputArray _hist, Stream& stream) { GpuMat src = _src.getGpuMat(); GpuMat mask = _mask.getGpuMat(); CV_Assert( src.type() == CV_8UC1 ); CV_Assert( mask.empty() || mask.type() == CV_8UC1 ); CV_Assert( mask.empty() || mask.size() == src.size() ); _hist.create(1, 256, CV_32SC1); GpuMat hist = _hist.getGpuMat(); hist.setTo(Scalar::all(0), stream); if (mask.empty()) hist::histogram256(src, hist.ptr(), StreamAccessor::getStream(stream)); else hist::histogram256(src, mask, hist.ptr(), StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // equalizeHist namespace hist { void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream); } void cv::cuda::equalizeHist(InputArray _src, OutputArray _dst, Stream& _stream) { GpuMat src = getInputMat(_src, _stream); CV_Assert( src.type() == CV_8UC1 ); _dst.create(src.size(), src.type()); GpuMat dst = _dst.getGpuMat(); int intBufSize; nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) ); size_t bufSize = intBufSize + 2 * 256 * sizeof(int); BufferPool pool(_stream); GpuMat buf = pool.getBuffer(1, static_cast(bufSize), CV_8UC1); GpuMat hist(1, 256, CV_32SC1, buf.data); GpuMat lut(1, 256, CV_32SC1, buf.data + 256 * sizeof(int)); GpuMat intBuf(1, intBufSize, CV_8UC1, buf.data + 2 * 256 * sizeof(int)); cuda::calcHist(src, hist, _stream); cudaStream_t stream = StreamAccessor::getStream(_stream); NppStreamHandler h(stream); nppSafeCall( nppsIntegral_32s(hist.ptr(), lut.ptr(), 256, intBuf.ptr()) ); hist::equalizeHist(src, dst, lut.ptr(), stream); } //////////////////////////////////////////////////////////////////////// // CLAHE namespace clahe { void calcLut_8U(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream); void calcLut_16U(PtrStepSzus src, PtrStepus lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, PtrStepSzi hist, cudaStream_t stream); template void transform(PtrStepSz src, PtrStepSz dst, PtrStep lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream); } namespace { class CLAHE_Impl : public cv::cuda::CLAHE { public: CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8); void apply(cv::InputArray src, cv::OutputArray dst); void apply(InputArray src, OutputArray dst, Stream& stream); void setClipLimit(double clipLimit); double getClipLimit() const; void setTilesGridSize(cv::Size tileGridSize); cv::Size getTilesGridSize() const; void collectGarbage(); private: double clipLimit_; int tilesX_; int tilesY_; GpuMat srcExt_; GpuMat lut_; GpuMat hist_; // histogram on global memory for CV_16UC1 case }; CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY) { } void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst) { apply(_src, _dst, Stream::Null()); } void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s) { GpuMat src = _src.getGpuMat(); const int type = src.type(); CV_Assert( type == CV_8UC1 || type == CV_16UC1 ); _dst.create( src.size(), type ); GpuMat dst = _dst.getGpuMat(); const int histSize = type == CV_8UC1 ? 256 : 65536; ensureSizeIsEnough(tilesX_ * tilesY_, histSize, type, lut_); cudaStream_t stream = StreamAccessor::getStream(s); cv::Size tileSize; GpuMat srcForLut; if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0) { tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_); srcForLut = src; } else { #ifndef HAVE_OPENCV_CUDAARITHM throw_no_cuda(); #else cv::cuda::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s); #endif tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_); srcForLut = srcExt_; } const int tileSizeTotal = tileSize.area(); const float lutScale = static_cast(histSize - 1) / tileSizeTotal; int clipLimit = 0; if (clipLimit_ > 0.0) { clipLimit = static_cast(clipLimit_ * tileSizeTotal / histSize); clipLimit = std::max(clipLimit, 1); } if (type == CV_8UC1) clahe::calcLut_8U(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream); else // type == CV_16UC1 { ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_32SC1, hist_); clahe::calcLut_16U(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, hist_, stream); } if (type == CV_8UC1) clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream); else // type == CV_16UC1 clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream); } void CLAHE_Impl::setClipLimit(double clipLimit) { clipLimit_ = clipLimit; } double CLAHE_Impl::getClipLimit() const { return clipLimit_; } void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize) { tilesX_ = tileGridSize.width; tilesY_ = tileGridSize.height; } cv::Size CLAHE_Impl::getTilesGridSize() const { return cv::Size(tilesX_, tilesY_); } void CLAHE_Impl::collectGarbage() { srcExt_.release(); lut_.release(); } } cv::Ptr cv::cuda::createCLAHE(double clipLimit, cv::Size tileGridSize) { return makePtr(clipLimit, tileGridSize.width, tileGridSize.height); } //////////////////////////////////////////////////////////////////////// // NPP Histogram namespace { typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize); typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize); template struct NppHistogramEvenFuncC1 { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist, int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer); }; template struct NppHistogramEvenFuncC4 { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramEvenC1 { typedef typename NppHistogramEvenFuncC1::src_t src_t; static void hist(const GpuMat& src, OutputArray _hist, int histSize, int lowerLevel, int upperLevel, Stream& stream) { const int levels = histSize + 1; _hist.create(1, histSize, CV_32S); GpuMat hist = _hist.getGpuMat(); NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, levels, &buf_size); BufferPool pool(stream); GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, hist.ptr(), levels, lowerLevel, upperLevel, buf.ptr()) ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramEvenC4 { typedef typename NppHistogramEvenFuncC4::src_t src_t; static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) { int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1}; hist[0].create(1, histSize[0], CV_32S); hist[1].create(1, histSize[1], CV_32S); hist[2].create(1, histSize[2], CV_32S); hist[3].create(1, histSize[3], CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; int buf_size; get_buf_size(sz, levels, &buf_size); BufferPool pool(stream); GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, pHist, levels, lowerLevel, upperLevel, buf.ptr()) ); if (!stream) cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppHistogramRangeFuncC1 { typedef typename NPPTypeTraits::npp_type src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32s* pLevels, int nLevels, Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC1 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32f* pLevels, int nLevels, Npp8u* pBuffer); }; template struct NppHistogramRangeFuncC4 { typedef typename NPPTypeTraits::npp_type src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC4 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramRangeC1 { typedef typename NppHistogramRangeFuncC1::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, OutputArray _hist, const GpuMat& levels, Stream& stream) { CV_Assert( levels.type() == LEVEL_TYPE_CODE && levels.rows == 1 ); _hist.create(1, levels.cols - 1, CV_32S); GpuMat hist = _hist.getGpuMat(); NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, levels.cols, &buf_size); BufferPool pool(stream); GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, hist.ptr(), levels.ptr(), levels.cols, buf.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramRangeC4 { typedef typename NppHistogramRangeFuncC4::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream) { CV_Assert( levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1 ); CV_Assert( levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1 ); CV_Assert( levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1 ); CV_Assert( levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1 ); hist[0].create(1, levels[0].cols - 1, CV_32S); hist[1].create(1, levels[1].cols - 1, CV_32S); hist[2].create(1, levels[2].cols - 1, CV_32S); hist[3].create(1, levels[3].cols - 1, CV_32S); Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols}; const level_t* pLevels[] = {levels[0].ptr(), levels[1].ptr(), levels[2].ptr(), levels[3].ptr()}; NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, nLevels, &buf_size); BufferPool pool(stream); GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, pHist, pLevels, nLevels, buf.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream) { const int kind = _levels.kind(); _levels.create(1, nLevels, CV_32SC1); Mat host_levels; if (kind == _InputArray::CUDA_GPU_MAT) host_levels.create(1, nLevels, CV_32SC1); else host_levels = _levels.getMat(); nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr(), nLevels, lowerLevel, upperLevel) ); if (kind == _InputArray::CUDA_GPU_MAT) _levels.getGpuMatRef().upload(host_levels, stream); } namespace hist { void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream); } namespace { void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream) { hist.create(1, histSize, CV_32S); cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) ); hist::histEven8u(src, hist.ptr(), histSize, lowerLevel, upperLevel, stream); } } void cv::cuda::histEven(InputArray _src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream) { typedef void (*hist_t)(const GpuMat& src, OutputArray hist, int levels, int lowerLevel, int upperLevel, Stream& stream); static const hist_t hist_callers[] = { NppHistogramEvenC1::hist, 0, NppHistogramEvenC1::hist, NppHistogramEvenC1::hist }; GpuMat src = _src.getGpuMat(); if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30)) { histEven8u(src, hist.getGpuMatRef(), histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); return; } CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 ); hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream); } void cv::cuda::histEven(InputArray _src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) { typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], Stream& stream); static const hist_t hist_callers[] = { NppHistogramEvenC4::hist, 0, NppHistogramEvenC4::hist, NppHistogramEvenC4::hist }; GpuMat src = _src.getGpuMat(); CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 ); hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream); } void cv::cuda::histRange(InputArray _src, OutputArray hist, InputArray _levels, Stream& stream) { typedef void (*hist_t)(const GpuMat& src, OutputArray hist, const GpuMat& levels, Stream& stream); static const hist_t hist_callers[] = { NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist, NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist }; GpuMat src = _src.getGpuMat(); GpuMat levels = _levels.getGpuMat(); CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1 ); hist_callers[src.depth()](src, hist, levels, stream); } void cv::cuda::histRange(InputArray _src, GpuMat hist[4], const GpuMat levels[4], Stream& stream) { typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream); static const hist_t hist_callers[] = { NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist, NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist }; GpuMat src = _src.getGpuMat(); CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4 ); hist_callers[src.depth()](src, hist, levels, stream); } #endif /* !defined (HAVE_CUDA) */