/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&, GpuMat&) { throw_nogpu(); } double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, int, GpuMat&) { throw_nogpu(); return 0.0; } double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::absSum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::absSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); } Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; } int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; } void cv::gpu::reduce(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } #else namespace { class DeviceBuffer { public: explicit DeviceBuffer(int count_ = 1) : count(count_) { cudaSafeCall( cudaMalloc(&pdev, count * sizeof(double)) ); } ~DeviceBuffer() { cudaSafeCall( cudaFree(pdev) ); } operator double*() {return pdev;} void download(double* hptr) { double hbuf; cudaSafeCall( cudaMemcpy(&hbuf, pdev, sizeof(double), cudaMemcpyDeviceToHost) ); *hptr = hbuf; } void download(double** hptrs) { AutoBuffer hbuf(count); cudaSafeCall( cudaMemcpy((void*)hbuf, pdev, count * sizeof(double), cudaMemcpyDeviceToHost) ); for (int i = 0; i < count; ++i) *hptrs[i] = hbuf[i]; } private: double* pdev; int count; }; } //////////////////////////////////////////////////////////////////////// // meanStdDev void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) { GpuMat buf; meanStdDev(src, mean, stddev, buf); } void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev, GpuMat& buf) { CV_Assert(src.type() == CV_8UC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; DeviceBuffer dbuf(2); int bufSize; nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) ); ensureSizeIsEnough(1, bufSize, CV_8UC1, buf); nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr(), static_cast(src.step), sz, buf.ptr(), dbuf, (double*)dbuf + 1) ); cudaSafeCall( cudaDeviceSynchronize() ); double* ptrs[2] = {mean.val, stddev.val}; dbuf.download(ptrs); } //////////////////////////////////////////////////////////////////////// // norm double cv::gpu::norm(const GpuMat& src, int normType) { GpuMat buf; return norm(src, normType, buf); } double cv::gpu::norm(const GpuMat& src, int normType, GpuMat& buf) { CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); GpuMat src_single_channel = src.reshape(1); if (normType == NORM_L1) return absSum(src_single_channel, buf)[0]; if (normType == NORM_L2) return std::sqrt(sqrSum(src_single_channel, buf)[0]); // NORM_INF double min_val, max_val; minMax(src_single_channel, &min_val, &max_val, GpuMat(), buf); return std::max(std::abs(min_val), std::abs(max_val)); } double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) { CV_Assert(src1.type() == CV_8UC1); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, NppiSize oSizeROI, Npp64f* pRetVal); static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; int funcIdx = normType >> 1; double retVal; DeviceBuffer dbuf; nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), sz, dbuf) ); cudaSafeCall( cudaDeviceSynchronize() ); dbuf.download(&retVal); return retVal; } //////////////////////////////////////////////////////////////////////// // Sum namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace sum { template void sumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template void sumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template void absSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template void absSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template void sqrSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); template void sqrSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn); void getBufSizeRequired(int cols, int rows, int cn, int& bufcols, int& bufrows); } } }}} Scalar cv::gpu::sum(const GpuMat& src) { GpuMat buf; return sum(src, buf); } Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf) { using namespace cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[] = { sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller, sumMultipassCaller }; static Caller singlepass_callers[] = { sumCaller, sumCaller, sumCaller, sumCaller, sumCaller, sumCaller }; CV_Assert(src.depth() <= CV_32F); Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.depth()]; double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } Scalar cv::gpu::absSum(const GpuMat& src) { GpuMat buf; return absSum(src, buf); } Scalar cv::gpu::absSum(const GpuMat& src, GpuMat& buf) { using namespace cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[] = { absSumMultipassCaller, absSumMultipassCaller, absSumMultipassCaller, absSumMultipassCaller, absSumMultipassCaller, absSumMultipassCaller }; static Caller singlepass_callers[] = { absSumCaller, absSumCaller, absSumCaller, absSumCaller, absSumCaller, absSumCaller }; CV_Assert(src.depth() <= CV_32F); Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.depth()]; double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } Scalar cv::gpu::sqrSum(const GpuMat& src) { GpuMat buf; return sqrSum(src, buf); } Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf) { using namespace cv::gpu::device::matrix_reductions::sum; typedef void (*Caller)(const DevMem2Db, PtrStepb, double*, int); static Caller multipass_callers[] = { sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller, sqrSumMultipassCaller }; static Caller singlepass_callers[7] = { sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller, sqrSumCaller }; CV_Assert(src.depth() <= CV_32F); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Size buf_size; getBufSizeRequired(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller caller = callers[src.depth()]; double result[4]; caller(src, buf, result, src.channels()); return Scalar(result[0], result[1], result[2], result[3]); } //////////////////////////////////////////////////////////////////////// // Find min or max namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace minmax { void getBufSizeRequired(int cols, int rows, int elem_size, int& bufcols, int& bufrows); template void minMaxCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf); template void minMaxMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); template void minMaxMultipassCaller(const DevMem2Db src, double* minval, double* maxval, PtrStepb buf); template void minMaxMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); } } }}} void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask) { GpuMat buf; minMax(src, minVal, maxVal, mask, buf); } void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::minmax; typedef void (*Caller)(const DevMem2Db, double*, double*, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, PtrStepb); static Caller multipass_callers[] = { minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, minMaxMultipassCaller, 0 }; static Caller singlepass_callers[] = { minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller, minMaxCaller }; static MaskedCaller masked_multipass_callers[] = { minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, minMaxMaskMultipassCaller, 0 }; static MaskedCaller masked_singlepass_callers[] = { minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller, minMaxMaskCaller }; CV_Assert(src.depth() <= CV_64F); CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; Size buf_size; getBufSizeRequired(src.cols, src.rows, static_cast(src.elemSize()), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); if (mask.empty()) { Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; CV_Assert(caller != 0); caller(src, minVal, maxVal, buf); } else { MaskedCaller* callers = masked_multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; CV_Assert(caller != 0); caller(src, mask, minVal, maxVal, buf); } } //////////////////////////////////////////////////////////////////////// // Locate min and max namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace minmaxloc { void getBufSizeRequired(int cols, int rows, int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows); template void minMaxLocCaller(const DevMem2Db src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template void minMaxLocMaskCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template void minMaxLocMultipassCaller(const DevMem2Db src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); template void minMaxLocMaskMultipassCaller(const DevMem2Db src, const PtrStepb mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStepb valBuf, PtrStepb locBuf); } } }}} void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask) { GpuMat valBuf, locBuf; minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf); } void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf) { using namespace ::cv::gpu::device::matrix_reductions::minmaxloc; typedef void (*Caller)(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb); typedef void (*MaskedCaller)(const DevMem2Db, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb); static Caller multipass_callers[] = { minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, minMaxLocMultipassCaller, 0 }; static Caller singlepass_callers[] = { minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller, minMaxLocCaller }; static MaskedCaller masked_multipass_callers[] = { minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, minMaxLocMaskMultipassCaller, 0 }; static MaskedCaller masked_singlepass_callers[] = { minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller, minMaxLocMaskCaller }; CV_Assert(src.depth() <= CV_64F); CV_Assert(src.channels() == 1); CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } double minVal_; if (!minVal) minVal = &minVal_; double maxVal_; if (!maxVal) maxVal = &maxVal_; int minLoc_[2]; int maxLoc_[2]; Size valbuf_size, locbuf_size; getBufSizeRequired(src.cols, src.rows, static_cast(src.elemSize()), valbuf_size.width, valbuf_size.height, locbuf_size.width, locbuf_size.height); ensureSizeIsEnough(valbuf_size, CV_8U, valBuf); ensureSizeIsEnough(locbuf_size, CV_8U, locBuf); if (mask.empty()) { Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; CV_Assert(caller != 0); caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } else { MaskedCaller* callers = masked_multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = masked_singlepass_callers; MaskedCaller caller = callers[src.type()]; CV_Assert(caller != 0); caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); } if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; } if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; } } ////////////////////////////////////////////////////////////////////////////// // Count non-zero elements namespace cv { namespace gpu { namespace device { namespace matrix_reductions { namespace countnonzero { void getBufSizeRequired(int cols, int rows, int& bufcols, int& bufrows); template int countNonZeroCaller(const DevMem2Db src, PtrStepb buf); template int countNonZeroMultipassCaller(const DevMem2Db src, PtrStepb buf); } } }}} int cv::gpu::countNonZero(const GpuMat& src) { GpuMat buf; return countNonZero(src, buf); } int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf) { using namespace ::cv::gpu::device::matrix_reductions::countnonzero; typedef int (*Caller)(const DevMem2Db src, PtrStepb buf); static Caller multipass_callers[7] = { countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, countNonZeroMultipassCaller, 0 }; static Caller singlepass_callers[7] = { countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller, countNonZeroCaller }; CV_Assert(src.depth() <= CV_64F); CV_Assert(src.channels() == 1); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } Size buf_size; getBufSizeRequired(src.cols, src.rows, buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); Caller* callers = multipass_callers; if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS)) callers = singlepass_callers; Caller caller = callers[src.type()]; CV_Assert(caller != 0); return caller(src, buf); } ////////////////////////////////////////////////////////////////////////////// // reduce namespace cv { namespace gpu { namespace device { namespace matrix_reductions { template void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); template void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); } }}} void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int dtype, Stream& stream) { using namespace ::cv::gpu::device::matrix_reductions; CV_Assert(src.depth() <= CV_32F && src.channels() <= 4 && dtype <= CV_32F); CV_Assert(dim == 0 || dim == 1); CV_Assert(reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG || reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN); if (dtype < 0) dtype = src.depth(); dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKETYPE(dtype, src.channels())); if (dim == 0) { typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); static const caller_t callers[6][6] = { { reduceRows_gpu, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, reduceRows_gpu, reduceRows_gpu }, { 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/ }, { 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, reduceRows_gpu, 0/*reduceRows_gpu*/, reduceRows_gpu, reduceRows_gpu }, { 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, reduceRows_gpu, reduceRows_gpu, reduceRows_gpu }, { 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, reduceRows_gpu, reduceRows_gpu }, { 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, 0/*reduceRows_gpu*/, reduceRows_gpu } }; const caller_t func = callers[src.depth()][dst.depth()]; if (!func) CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); func(src.reshape(1), dst.reshape(1), reduceOp, StreamAccessor::getStream(stream)); } else { typedef void (*caller_t)(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream); static const caller_t callers[6][6] = { { reduceCols_gpu, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, reduceCols_gpu, reduceCols_gpu }, { 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/ }, { 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, reduceCols_gpu, 0/*reduceCols_gpu*/, reduceCols_gpu, reduceCols_gpu }, { 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, reduceCols_gpu, reduceCols_gpu, reduceCols_gpu }, { 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, reduceCols_gpu, reduceCols_gpu }, { 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, 0/*reduceCols_gpu*/, reduceCols_gpu } }; const caller_t func = callers[src.depth()][dst.depth()]; if (!func) CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats"); func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream)); } } #endif