#ifndef OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP #define OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP #include struct PerfReport { std::string name; double avg_latency = 0.0; int64_t min_latency = 0; int64_t max_latency = 0; int64_t first_latency = 0; double throughput = 0.0; int64_t elapsed = 0; int64_t warmup_time = 0; int64_t num_late_frames = 0; std::vector latencies; std::string toStr(bool expanded = false) const; }; std::string PerfReport::toStr(bool expand) const { std::stringstream ss; ss << name << ": \n" << " Warm up time: " << warmup_time << " ms\n" << " Execution time: " << elapsed << " ms\n" << " Frames: " << num_late_frames << "/" << latencies.size() << " (late/all)\n" << " Latency:\n" << " first: " << first_latency << " ms\n" << " min: " << min_latency << " ms\n" << " max: " << max_latency << " ms\n" << " avg: " << std::fixed << std::setprecision(3) << avg_latency << " ms\n" << " Throughput: " << std::fixed << std::setprecision(3) << throughput << " FPS"; if (expand) { for (size_t i = 0; i < latencies.size(); ++i) { ss << "\nFrame:" << i << "\nLatency: " << latencies[i] << " ms"; } } return ss.str(); } class StopCriteria { public: using Ptr = std::unique_ptr; virtual void start() = 0; virtual void iter() = 0; virtual bool done() = 0; virtual ~StopCriteria() = default; }; class Pipeline { public: using Ptr = std::shared_ptr; Pipeline(std::string&& name, cv::GComputation&& comp, std::shared_ptr&& src, StopCriteria::Ptr stop_criteria, cv::GCompileArgs&& args, const size_t num_outputs); void compile(); void run(); const PerfReport& report() const; const std::string& name() const { return m_name;} virtual ~Pipeline() = default; protected: virtual void _compile() = 0; virtual int64_t run_iter() = 0; virtual void init() {}; virtual void deinit() {}; std::string m_name; cv::GComputation m_comp; std::shared_ptr m_src; StopCriteria::Ptr m_stop_criteria; cv::GCompileArgs m_args; size_t m_num_outputs; PerfReport m_perf; }; Pipeline::Pipeline(std::string&& name, cv::GComputation&& comp, std::shared_ptr&& src, StopCriteria::Ptr stop_criteria, cv::GCompileArgs&& args, const size_t num_outputs) : m_name(std::move(name)), m_comp(std::move(comp)), m_src(std::move(src)), m_stop_criteria(std::move(stop_criteria)), m_args(std::move(args)), m_num_outputs(num_outputs) { m_perf.name = m_name; } void Pipeline::compile() { m_perf.warmup_time = utils::measure([this]() { _compile(); }); } void Pipeline::run() { using namespace std::chrono; init(); auto start = high_resolution_clock::now(); m_stop_criteria->start(); while (true) { m_perf.latencies.push_back(run_iter()); m_perf.elapsed = duration_cast(high_resolution_clock::now() - start).count(); m_stop_criteria->iter(); if (m_stop_criteria->done()) { deinit(); break; } } m_perf.avg_latency = utils::avg(m_perf.latencies); m_perf.min_latency = utils::min(m_perf.latencies); m_perf.max_latency = utils::max(m_perf.latencies); m_perf.first_latency = m_perf.latencies[0]; // NB: Count how many executions don't fit into camera latency interval. m_perf.num_late_frames = std::count_if(m_perf.latencies.begin(), m_perf.latencies.end(), [this](int64_t latency) { return static_cast(latency) > m_src->latency(); }); m_perf.throughput = (m_perf.latencies.size() / static_cast(m_perf.elapsed)) * 1000; } const PerfReport& Pipeline::report() const { return m_perf; } class StreamingPipeline : public Pipeline { public: using Pipeline::Pipeline; private: void _compile() override { m_compiled = m_comp.compileStreaming({m_src->descr_of()}, cv::GCompileArgs(m_args)); } virtual void init() override { using namespace std::chrono; // NB: N-1 buffers + timestamp. m_out_mats.resize(m_num_outputs - 1); for (auto& m : m_out_mats) { m_pipeline_outputs += cv::gout(m); } m_pipeline_outputs += cv::gout(m_start_ts); m_compiled.setSource(m_src); m_compiled.start(); } virtual void deinit() override { m_compiled.stop(); } virtual int64_t run_iter() override { m_compiled.pull(cv::GRunArgsP{m_pipeline_outputs}); return utils::timestamp() - m_start_ts; } cv::GStreamingCompiled m_compiled; cv::GRunArgsP m_pipeline_outputs; std::vector m_out_mats; int64_t m_start_ts; }; class RegularPipeline : public Pipeline { public: using Pipeline::Pipeline; private: void _compile() override { m_compiled = m_comp.compile({m_src->descr_of()}, cv::GCompileArgs(m_args)); } virtual void init() override { m_out_mats.resize(m_num_outputs); for (auto& m : m_out_mats) { m_pipeline_outputs += cv::gout(m); } } virtual int64_t run_iter() override { using namespace std::chrono; cv::gapi::wip::Data d; m_src->pull(d); auto in_mat = cv::util::get(d); return utils::measure([&]{ m_compiled(cv::gin(in_mat), cv::GRunArgsP{m_pipeline_outputs}); }); } cv::GCompiled m_compiled; cv::GRunArgsP m_pipeline_outputs; std::vector m_out_mats; }; enum class PLMode { REGULAR, STREAMING }; #endif // OPENCV_GAPI_PIPELINE_MODELING_TOOL_PIPELINE_HPP