/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #ifdef HAVE_CUDA using cv::gpu::GpuMat; TEST(SoftCascade, readCascade) { std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml"; cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(xml)); } TEST(SoftCascade, detect) { std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(xml)); cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/bahnhof/image_00000000_0.png"); ASSERT_FALSE(coloredCpu.empty()); GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); rois.setTo(0); GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2)); sub.setTo(cv::Scalar::all(1)); cascade.detectMultiScale(colored, rois, objectBoxes); } class SCSpecific : public ::testing::TestWithParam > { }; namespace { std::string itoa(long i) { static char s[65]; sprintf(s, "%ld", i); return std::string(s); } } TEST_P(SCSpecific, detect) { std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml"; cv::gpu::SoftCascade cascade; ASSERT_TRUE(cascade.load(xml)); std::string path = GET_PARAM(0); cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + path); ASSERT_FALSE(coloredCpu.empty()); GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); rois.setTo(0); GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2)); sub.setTo(cv::Scalar::all(1)); int level = GET_PARAM(1); cascade.detectMultiScale(colored, rois, objectBoxes, 1, level); cv::Mat dt(objectBoxes); typedef cv::gpu::SoftCascade::Detection detection_t; detection_t* dts = (detection_t*)dt.data; cv::Mat result(coloredCpu); std::cout << "Total detections " << (dt.cols / sizeof(detection_t)) << std::endl; for(int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i) { detection_t d = dts[i]; std::cout << "detection: [" << std::setw(4) << d.x << " " << std::setw(4) << d.y << "] [" << std::setw(4) << d.w << " " << std::setw(4) << d.h << "] " << std::setw(12) << d.confidence << std::endl; cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); } std::cout << "Result stored in " << "/home/kellan/gpu_res_1_oct_" + itoa(level) << "_" + itoa((dt.cols / sizeof(detection_t))) + ".png" << std::endl; cv::imwrite("/home/kellan/gpu_res_1_oct_" + itoa(level) + "_" + itoa((dt.cols / sizeof(detection_t))) + ".png", result); cv::imshow("res", result); cv::waitKey(0); } INSTANTIATE_TEST_CASE_P(inLevel, SCSpecific, testing::Combine( testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")), testing::Range(0, 47) )); #endif