/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) cv::gpu::PyrLKOpticalFlow::PyrLKOpticalFlow() { throw_nogpu(); } void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat&, const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat*) { throw_nogpu(); } void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat*) { throw_nogpu(); } void cv::gpu::PyrLKOpticalFlow::releaseMemory() {} #else /* !defined (HAVE_CUDA) */ namespace pyrlk { void loadConstants(int2 winSize, int iters); void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, int level, dim3 block, dim3 patch, cudaStream_t stream = 0); void sparse4(PtrStepSz I, PtrStepSz J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, int level, dim3 block, dim3 patch, cudaStream_t stream = 0); void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, PtrStepSzf err, int2 winSize, cudaStream_t stream = 0); } cv::gpu::PyrLKOpticalFlow::PyrLKOpticalFlow() { winSize = Size(21, 21); maxLevel = 3; iters = 30; useInitialFlow = false; } namespace { void calcPatchSize(cv::Size winSize, dim3& block, dim3& patch) { if (winSize.width > 32 && winSize.width > 2 * winSize.height) { block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16; block.y = 8; } else { block.x = 16; block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8; } patch.x = (winSize.width + block.x - 1) / block.x; patch.y = (winSize.height + block.y - 1) / block.y; block.z = patch.z = 1; } } void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err) { if (prevPts.empty()) { nextPts.release(); status.release(); if (err) err->release(); return; } dim3 block, patch; calcPatchSize(winSize, block, patch); CV_Assert(prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(maxLevel >= 0); CV_Assert(winSize.width > 2 && winSize.height > 2); CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6); CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2); if (useInitialFlow) CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2); else ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); GpuMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); GpuMat temp2 = nextPts.reshape(1); multiply(temp1, Scalar::all(1.0 / (1 << maxLevel) / 2.0), temp2); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); status.setTo(Scalar::all(1)); if (err) ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); // build the image pyramids. prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); int cn = prevImg.channels(); if (cn == 1 || cn == 4) { prevImg.convertTo(prevPyr_[0], CV_32F); nextImg.convertTo(nextPyr_[0], CV_32F); } else { buf_.resize(1); cvtColor(prevImg, buf_[0], COLOR_BGR2BGRA); buf_[0].convertTo(prevPyr_[0], CV_32F); cvtColor(nextImg, buf_[0], COLOR_BGR2BGRA); buf_[0].convertTo(nextPyr_[0], CV_32F); } for (int level = 1; level <= maxLevel; ++level) { pyrDown(prevPyr_[level - 1], prevPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]); } pyrlk::loadConstants(make_int2(winSize.width, winSize.height), iters); for (int level = maxLevel; level >= 0; level--) { if (cn == 1) { pyrlk::sparse1(prevPyr_[level], nextPyr_[level], prevPts.ptr(), nextPts.ptr(), status.ptr(), level == 0 && err ? err->ptr() : 0, prevPts.cols, level, block, patch); } else { pyrlk::sparse4(prevPyr_[level], nextPyr_[level], prevPts.ptr(), nextPts.ptr(), status.ptr(), level == 0 && err ? err->ptr() : 0, prevPts.cols, level, block, patch); } } } void cv::gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err) { CV_Assert(prevImg.type() == CV_8UC1); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(maxLevel >= 0); CV_Assert(winSize.width > 2 && winSize.height > 2); if (err) err->create(prevImg.size(), CV_32FC1); // build the image pyramids. prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); prevPyr_[0] = prevImg; nextImg.convertTo(nextPyr_[0], CV_32F); for (int level = 1; level <= maxLevel; ++level) { pyrDown(prevPyr_[level - 1], prevPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]); } ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]); uPyr_[0].setTo(Scalar::all(0)); vPyr_[0].setTo(Scalar::all(0)); uPyr_[1].setTo(Scalar::all(0)); vPyr_[1].setTo(Scalar::all(0)); int2 winSize2i = make_int2(winSize.width, winSize.height); pyrlk::loadConstants(winSize2i, iters); PtrStepSzf derr = err ? *err : PtrStepSzf(); int idx = 0; for (int level = maxLevel; level >= 0; level--) { int idx2 = (idx + 1) & 1; pyrlk::dense(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2], level == 0 ? derr : PtrStepSzf(), winSize2i); if (level > 0) idx = idx2; } uPyr_[idx].copyTo(u); vPyr_[idx].copyTo(v); } void cv::gpu::PyrLKOpticalFlow::releaseMemory() { prevPyr_.clear(); nextPyr_.clear(); buf_.clear(); uPyr_[0].release(); vPyr_[0].release(); uPyr_[1].release(); vPyr_[1].release(); } #endif /* !defined (HAVE_CUDA) */