/* * Hardware-accelerated CRC-32 variants for Linux on z Systems * * Use the z/Architecture Vector Extension Facility to accelerate the * computing of bitreflected CRC-32 checksums. * * This CRC-32 implementation algorithm is bitreflected and processes * the least-significant bit first (Little-Endian). * * This code was originally written by Hendrik Brueckner * for use in the Linux kernel and has been * relicensed under the zlib license. */ #include "zbuild.h" #include "arch_functions.h" #include typedef unsigned char uv16qi __attribute__((vector_size(16))); typedef unsigned int uv4si __attribute__((vector_size(16))); typedef unsigned long long uv2di __attribute__((vector_size(16))); static uint32_t crc32_le_vgfm_16(uint32_t crc, const uint8_t *buf, size_t len) { /* * The CRC-32 constant block contains reduction constants to fold and * process particular chunks of the input data stream in parallel. * * For the CRC-32 variants, the constants are precomputed according to * these definitions: * * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 * R3 = [(x128+32 mod P'(x) << 32)]' << 1 * R4 = [(x128-32 mod P'(x) << 32)]' << 1 * R5 = [(x64 mod P'(x) << 32)]' << 1 * R6 = [(x32 mod P'(x) << 32)]' << 1 * * The bitreflected Barret reduction constant, u', is defined as * the bit reversal of floor(x**64 / P(x)). * * where P(x) is the polynomial in the normal domain and the P'(x) is the * polynomial in the reversed (bitreflected) domain. * * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: * * P(x) = 0x04C11DB7 * P'(x) = 0xEDB88320 */ const uv16qi perm_le2be = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; /* BE->LE mask */ const uv2di r2r1 = {0x1C6E41596, 0x154442BD4}; /* R2, R1 */ const uv2di r4r3 = {0x0CCAA009E, 0x1751997D0}; /* R4, R3 */ const uv2di r5 = {0, 0x163CD6124}; /* R5 */ const uv2di ru_poly = {0, 0x1F7011641}; /* u' */ const uv2di crc_poly = {0, 0x1DB710641}; /* P'(x) << 1 */ /* * Load the initial CRC value. * * The CRC value is loaded into the rightmost word of the * vector register and is later XORed with the LSB portion * of the loaded input data. */ uv2di v0 = {0, 0}; v0 = (uv2di)vec_insert(crc, (uv4si)v0, 3); /* Load a 64-byte data chunk and XOR with CRC */ uv2di v1 = vec_perm(((uv2di *)buf)[0], ((uv2di *)buf)[0], perm_le2be); uv2di v2 = vec_perm(((uv2di *)buf)[1], ((uv2di *)buf)[1], perm_le2be); uv2di v3 = vec_perm(((uv2di *)buf)[2], ((uv2di *)buf)[2], perm_le2be); uv2di v4 = vec_perm(((uv2di *)buf)[3], ((uv2di *)buf)[3], perm_le2be); v1 ^= v0; buf += 64; len -= 64; while (len >= 64) { /* Load the next 64-byte data chunk */ uv16qi part1 = vec_perm(((uv16qi *)buf)[0], ((uv16qi *)buf)[0], perm_le2be); uv16qi part2 = vec_perm(((uv16qi *)buf)[1], ((uv16qi *)buf)[1], perm_le2be); uv16qi part3 = vec_perm(((uv16qi *)buf)[2], ((uv16qi *)buf)[2], perm_le2be); uv16qi part4 = vec_perm(((uv16qi *)buf)[3], ((uv16qi *)buf)[3], perm_le2be); /* * Perform a GF(2) multiplication of the doublewords in V1 with * the R1 and R2 reduction constants in V0. The intermediate result * is then folded (accumulated) with the next data chunk in PART1 and * stored in V1. Repeat this step for the register contents * in V2, V3, and V4 respectively. */ v1 = (uv2di)vec_gfmsum_accum_128(r2r1, v1, part1); v2 = (uv2di)vec_gfmsum_accum_128(r2r1, v2, part2); v3 = (uv2di)vec_gfmsum_accum_128(r2r1, v3, part3); v4 = (uv2di)vec_gfmsum_accum_128(r2r1, v4, part4); buf += 64; len -= 64; } /* * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 * and R4 and accumulating the next 128-bit chunk until a single 128-bit * value remains. */ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2); v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v3); v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v4); while (len >= 16) { /* Load next data chunk */ v2 = vec_perm(*(uv2di *)buf, *(uv2di *)buf, perm_le2be); /* Fold next data chunk */ v1 = (uv2di)vec_gfmsum_accum_128(r4r3, v1, (uv16qi)v2); buf += 16; len -= 16; } /* * Set up a vector register for byte shifts. The shift value must * be loaded in bits 1-4 in byte element 7 of a vector register. * Shift by 8 bytes: 0x40 * Shift by 4 bytes: 0x20 */ uv16qi v9 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; v9 = vec_insert((unsigned char)0x40, v9, 7); /* * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes * to move R4 into the rightmost doubleword and set the leftmost * doubleword to 0x1. */ v0 = vec_srb(r4r3, (uv2di)v9); v0[0] = 1; /* * Compute GF(2) product of V1 and V0. The rightmost doubleword * of V1 is multiplied with R4. The leftmost doubleword of V1 is * multiplied by 0x1 and is then XORed with rightmost product. * Implicitly, the intermediate leftmost product becomes padded */ v1 = (uv2di)vec_gfmsum_128(v0, v1); /* * Now do the final 32-bit fold by multiplying the rightmost word * in V1 with R5 and XOR the result with the remaining bits in V1. * * To achieve this by a single VGFMAG, right shift V1 by a word * and store the result in V2 which is then accumulated. Use the * vector unpack instruction to load the rightmost half of the * doubleword into the rightmost doubleword element of V1; the other * half is loaded in the leftmost doubleword. * The vector register with CONST_R5 contains the R5 constant in the * rightmost doubleword and the leftmost doubleword is zero to ignore * the leftmost product of V1. */ v9 = vec_insert((unsigned char)0x20, v9, 7); v2 = vec_srb(v1, (uv2di)v9); v1 = vec_unpackl((uv4si)v1); /* Split rightmost doubleword */ v1 = (uv2di)vec_gfmsum_accum_128(r5, v1, (uv16qi)v2); /* * Apply a Barret reduction to compute the final 32-bit CRC value. * * The input values to the Barret reduction are the degree-63 polynomial * in V1 (R(x)), degree-32 generator polynomial, and the reduction * constant u. The Barret reduction result is the CRC value of R(x) mod * P(x). * * The Barret reduction algorithm is defined as: * * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) * 3. C(x) = R(x) XOR T2(x) mod x^32 * * Note: The leftmost doubleword of vector register containing * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product * is zero and does not contribute to the final result. */ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ v2 = vec_unpackl((uv4si)v1); v2 = (uv2di)vec_gfmsum_128(ru_poly, v2); /* * Compute the GF(2) product of the CRC polynomial with T1(x) in * V2 and XOR the intermediate result, T2(x), with the value in V1. * The final result is stored in word element 2 of V2. */ v2 = vec_unpackl((uv4si)v2); v2 = (uv2di)vec_gfmsum_accum_128(crc_poly, v2, (uv16qi)v1); return ((uv4si)v2)[2]; } #define VX_MIN_LEN 64 #define VX_ALIGNMENT 16L #define VX_ALIGN_MASK (VX_ALIGNMENT - 1) uint32_t Z_INTERNAL crc32_s390_vx(uint32_t crc, const unsigned char *buf, size_t len) { size_t prealign, aligned, remaining; if (len < VX_MIN_LEN + VX_ALIGN_MASK) return PREFIX(crc32_braid)(crc, buf, len); if ((uintptr_t)buf & VX_ALIGN_MASK) { prealign = VX_ALIGNMENT - ((uintptr_t)buf & VX_ALIGN_MASK); len -= prealign; crc = PREFIX(crc32_braid)(crc, buf, prealign); buf += prealign; } aligned = len & ~VX_ALIGN_MASK; remaining = len & VX_ALIGN_MASK; crc = crc32_le_vgfm_16(crc ^ 0xffffffff, buf, aligned) ^ 0xffffffff; if (remaining) crc = PREFIX(crc32_braid)(crc, buf + aligned, remaining); return crc; }