/* This file is part of OpenCV project. It is subject to the license terms in the LICENSE file found in the top-level directory of this distribution and at http://opencv.org/license.html. This sample deblurs the given blurry image. Copyright (C) 2025, Bigvision LLC. How to use: Sample command to run: `./example_dnn_deblurring` You can download NAFNet deblurring model using `python download_models.py NAFNet` References: Github: https://github.com/megvii-research/NAFNet PyTorch model: https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view PyTorch model was converted to ONNX and then ONNX model was further quantized using block quantization from [opencv_zoo](https://github.com/opencv/opencv_zoo/blob/main/tools/quantize/block_quantize.py) Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data. */ #include #include #include #include #include #include "common.hpp" using namespace cv; using namespace dnn; using namespace std; const string about = "Use this script for image deblurring using OpenCV. \n\n" "Firstly, download required models i.e. NAFNet using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n" "To run:\n" "\t Example: ./example_dnn_deblurring [--input=] \n\n" "Deblurring model path can also be specified using --model argument.\n\n"; const string param_keys = "{ help h | | show help message}" "{ @alias | NAFNet | An alias name of model to extract preprocessing parameters from models.yml file. }" "{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }" "{ input i | licenseplate_motion.jpg | image file path}"; const string backend_keys = format( "{ backend | default | Choose one of computation backends: " "default: automatically (by default), " "openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "opencv: OpenCV implementation, " "vkcom: VKCOM, " "cuda: CUDA, " "webnn: WebNN }"); const string target_keys = format( "{ target | cpu | Choose one of target computation devices: " "cpu: CPU target (by default), " "opencl: OpenCL, " "opencl_fp16: OpenCL fp16 (half-float precision), " "vpu: VPU, " "vulkan: Vulkan, " "cuda: CUDA, " "cuda_fp16: CUDA fp16 (half-float preprocess) }"); string keys = param_keys + backend_keys + target_keys; int main(int argc, char **argv) { CommandLineParser parser(argc, argv, keys); if (!parser.has("@alias") || parser.has("help")) { cout<("@alias"); string zooFile = findFile(parser.get("zoo")); keys += genPreprocArguments(modelName, zooFile); parser = CommandLineParser(argc, argv, keys); parser.about("Use this script to run image deblurring using OpenCV."); const string sha1 = parser.get("sha1"); const string modelPath = findModel(parser.get("model"), sha1); string imgPath = parser.get("input"); const string backend = parser.get("backend"); const string target = parser.get("target"); float scale = parser.get("scale"); bool swapRB = parser.get("rgb"); Scalar mean_v = parser.get("mean"); EngineType engine = ENGINE_AUTO; if (backend != "default" || target != "cpu"){ engine = ENGINE_CLASSIC; } Net net = readNetFromONNX(modelPath, engine); net.setPreferableBackend(getBackendID(backend)); net.setPreferableTarget(getTargetID(target)); Mat inputImage = imread(findFile(imgPath)); if (inputImage.empty()) { cerr << "Error: Input image could not be loaded." << endl; return -1; } Mat image = inputImage.clone(); Mat image_blob = blobFromImage(image, scale, Size(image.cols, image.rows), mean_v, swapRB, false); net.setInput(image_blob); Mat output = net.forward(); // Post Processing Mat output_transposed(3, &output.size[1], CV_32F, output.ptr()); vector channels = { Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr(2)), Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr(1)), Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr(0)) }; Mat outputImage; merge(channels, outputImage); outputImage.convertTo(outputImage, CV_8UC3, 255.0); imshow("Input Image", inputImage); imshow("Output Image", outputImage); waitKey(0); return 0; }