/*M /////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include #include #include #include "opencl_kernels_dnn.hpp" namespace cv { namespace dnn { class ReorgLayerImpl : public ReorgLayer { int reorgStride; public: ReorgLayerImpl(const LayerParams& params) { setParamsFrom(params); reorgStride = params.get("reorg_stride", 2); CV_Assert(reorgStride > 0); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { CV_Assert(inputs.size() > 0); outputs = std::vector(inputs.size(), shape( inputs[0][0], inputs[0][1] * reorgStride * reorgStride, inputs[0][2] / reorgStride, inputs[0][3] / reorgStride)); CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0); CV_Assert(total(outputs[0]) == total(inputs[0])); return false; } virtual bool supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT; } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { std::vector inputs; std::vector outputs; inps.getUMatVector(inputs); outs.getUMatVector(outputs); String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" "); for (size_t i = 0; i < inputs.size(); i++) { ocl::Kernel kernel("reorg", ocl::dnn::reorg_oclsrc, buildopt); if (kernel.empty()) return false; UMat& srcBlob = inputs[i]; UMat& dstBlob = outputs[0]; int channels = srcBlob.size[1]; int height = srcBlob.size[2]; int width = srcBlob.size[3]; size_t nthreads = channels * height * width; kernel.set(0, (int)nthreads); kernel.set(1, ocl::KernelArg::PtrReadOnly(srcBlob)); kernel.set(2, (int)channels); kernel.set(3, (int)height); kernel.set(4, (int)width); kernel.set(5, (int)reorgStride); kernel.set(6, ocl::KernelArg::PtrWriteOnly(dstBlob)); if (!kernel.run(1, &nthreads, NULL, false)) return false; } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); for (size_t i = 0; i < inputs.size(); i++) { Mat srcBlob = *inputs[i]; MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]); float *dstData = outputs[0].ptr(); const float *srcData = srcBlob.ptr(); int channels = inputShape[1], height = inputShape[2], width = inputShape[3]; int out_c = channels / (reorgStride*reorgStride); for (int k = 0; k < channels; ++k) { for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { int out_index = i + width*(j + height*k); int c2 = k % out_c; int offset = k / out_c; int w2 = i*reorgStride + offset % reorgStride; int h2 = j*reorgStride + offset / reorgStride; int in_index = w2 + width*reorgStride*(h2 + height*reorgStride*c2); dstData[out_index] = srcData[in_index]; } } } } } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { (void)outputs; // suppress unused variable warning int64 flops = 0; for(int i = 0; i < inputs.size(); i++) { flops += 21*total(inputs[i]); } return flops; } }; Ptr ReorgLayer::create(const LayerParams& params) { return Ptr(new ReorgLayerImpl(params)); } } // namespace dnn } // namespace cv