/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Fangfang Bai, fangfang@multicorewareinc.com // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" ///////////// equalizeHist //////////////////////// PERFTEST(equalizeHist) { Mat src, dst, ocl_dst; int all_type[] = {CV_8UC1}; std::string type_name[] = {"CV_8UC1"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); equalizeHist(src, dst); CPU_ON; equalizeHist(src, dst); CPU_OFF; ocl::oclMat d_src(src); ocl::oclMat d_dst; ocl::oclMat d_hist; ocl::oclMat d_buf; WARMUP_ON; ocl::equalizeHist(d_src, d_dst); WARMUP_OFF; GPU_ON; ocl::equalizeHist(d_src, d_dst); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::equalizeHist(d_src, d_dst); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.1); } } } /////////// CopyMakeBorder ////////////////////// PERFTEST(CopyMakeBorder) { Mat src, dst, ocl_dst; ocl::oclMat d_dst; int bordertype = BORDER_CONSTANT; int all_type[] = {CV_8UC1, CV_8UC4}; std::string type_name[] = {"CV_8UC1", "CV_8UC4"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); copyMakeBorder(src, dst, 7, 5, 5, 7, bordertype, cv::Scalar(1.0)); CPU_ON; copyMakeBorder(src, dst, 7, 5, 5, 7, bordertype, cv::Scalar(1.0)); CPU_OFF; ocl::oclMat d_src(src); WARMUP_ON; ocl::copyMakeBorder(d_src, d_dst, 7, 5, 5, 7, bordertype, cv::Scalar(1.0)); WARMUP_OFF; GPU_ON; ocl::copyMakeBorder(d_src, d_dst, 7, 5, 5, 7, bordertype, cv::Scalar(1.0)); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::copyMakeBorder(d_src, d_dst, 7, 5, 5, 7, bordertype, cv::Scalar(1.0)); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0); } } } ///////////// cornerMinEigenVal //////////////////////// PERFTEST(cornerMinEigenVal) { Mat src, dst, ocl_dst; ocl::oclMat d_dst; int blockSize = 7, apertureSize = 1 + 2 * (rand() % 4); int borderType = BORDER_REFLECT; int all_type[] = {CV_8UC1, CV_32FC1}; std::string type_name[] = {"CV_8UC1", "CV_32FC1"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); cornerMinEigenVal(src, dst, blockSize, apertureSize, borderType); CPU_ON; cornerMinEigenVal(src, dst, blockSize, apertureSize, borderType); CPU_OFF; ocl::oclMat d_src(src); WARMUP_ON; ocl::cornerMinEigenVal(d_src, d_dst, blockSize, apertureSize, borderType); WARMUP_OFF; GPU_ON; ocl::cornerMinEigenVal(d_src, d_dst, blockSize, apertureSize, borderType); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::cornerMinEigenVal(d_src, d_dst, blockSize, apertureSize, borderType); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } } ///////////// cornerHarris //////////////////////// PERFTEST(cornerHarris) { Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; int all_type[] = {CV_8UC1, CV_32FC1}; std::string type_name[] = {"CV_8UC1", "CV_32FC1"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; BORDER_REFLECT"; gen(src, size, size, all_type[j], 0, 1); cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT); CPU_ON; cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT); WARMUP_OFF; GPU_ON; ocl::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } } ///////////// integral //////////////////////// PERFTEST(integral) { Mat src, sum, ocl_sum; ocl::oclMat d_src, d_sum, d_buf; int all_type[] = {CV_8UC1}; std::string type_name[] = {"CV_8UC1"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); integral(src, sum); CPU_ON; integral(src, sum); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::integral(d_src, d_sum); WARMUP_OFF; GPU_ON; ocl::integral(d_src, d_sum); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::integral(d_src, d_sum); d_sum.download(ocl_sum); GPU_FULL_OFF; if(sum.type() == ocl_sum.type()) //we won't test accuracy when cpu function overlow TestSystem::instance().ExpectedMatNear(sum, ocl_sum, 0.0); } } } ///////////// WarpAffine //////////////////////// PERFTEST(WarpAffine) { Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; static const double coeffs[2][3] = { {cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, {sin(CV_PI / 6), cos(CV_PI / 6), -100.0} }; Mat M(2, 3, CV_64F, (void *)coeffs); int interpolation = INTER_NEAREST; int all_type[] = {CV_8UC1, CV_8UC4}; std::string type_name[] = {"CV_8UC1", "CV_8UC4"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); gen(dst, size, size, all_type[j], 0, 256); Size size1 = Size(size, size); warpAffine(src, dst, M, size1, interpolation); CPU_ON; warpAffine(src, dst, M, size1, interpolation); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::warpAffine(d_src, d_dst, M, size1, interpolation); WARMUP_OFF; GPU_ON; ocl::warpAffine(d_src, d_dst, M, size1, interpolation); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::warpAffine(d_src, d_dst, M, size1, interpolation); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } } ///////////// WarpPerspective //////////////////////// PERFTEST(WarpPerspective) { Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; static const double coeffs[3][3] = { {cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, {sin(CV_PI / 6), cos(CV_PI / 6), -100.0}, {0.0, 0.0, 1.0} }; Mat M(3, 3, CV_64F, (void *)coeffs); int interpolation = INTER_LINEAR; int all_type[] = {CV_8UC1, CV_8UC4}; std::string type_name[] = {"CV_8UC1", "CV_8UC4"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); gen(dst, size, size, all_type[j], 0, 256); Size size1 = Size(size, size); warpPerspective(src, dst, M, size1, interpolation); CPU_ON; warpPerspective(src, dst, M, size1, interpolation); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::warpPerspective(d_src, d_dst, M, size1, interpolation); WARMUP_OFF; GPU_ON; ocl::warpPerspective(d_src, d_dst, M, size1, interpolation); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::warpPerspective(d_src, d_dst, M, size1, interpolation); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } } ///////////// resize //////////////////////// PERFTEST(resize) { Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; int all_type[] = {CV_8UC1, CV_8UC4}; std::string type_name[] = {"CV_8UC1", "CV_8UC4"}; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; up"; gen(src, size, size, all_type[j], 0, 256); resize(src, dst, Size(), 2.0, 2.0); CPU_ON; resize(src, dst, Size(), 2.0, 2.0); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::resize(d_src, d_dst, Size(), 2.0, 2.0); WARMUP_OFF; GPU_ON; ocl::resize(d_src, d_dst, Size(), 2.0, 2.0); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::resize(d_src, d_dst, Size(), 2.0, 2.0); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] << " ; down"; gen(src, size, size, all_type[j], 0, 256); resize(src, dst, Size(), 0.5, 0.5); CPU_ON; resize(src, dst, Size(), 0.5, 0.5); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::resize(d_src, d_dst, Size(), 0.5, 0.5); WARMUP_OFF; GPU_ON; ocl::resize(d_src, d_dst, Size(), 0.5, 0.5); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::resize(d_src, d_dst, Size(), 0.5, 0.5); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } } ///////////// threshold//////////////////////// PERFTEST(threshold) { Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { SUBTEST << size << 'x' << size << "; 8UC1; THRESH_BINARY"; gen(src, size, size, CV_8U, 0, 100); threshold(src, dst, 50.0, 0.0, THRESH_BINARY); CPU_ON; threshold(src, dst, 50.0, 0.0, THRESH_BINARY); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY); WARMUP_OFF; GPU_ON; ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } for (int size = Min_Size; size <= Max_Size; size *= Multiple) { SUBTEST << size << 'x' << size << "; 32FC1; THRESH_TRUNC [NPP]"; gen(src, size, size, CV_32FC1, 0, 100); threshold(src, dst, 50.0, 0.0, THRESH_TRUNC); CPU_ON; threshold(src, dst, 50.0, 0.0, THRESH_TRUNC); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC); WARMUP_OFF; GPU_ON; ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); } } ///////////// meanShiftFiltering//////////////////////// COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab) { int isr2 = sr * sr; int c0, c1, c2, c3; int iter; uchar *ptr = NULL; uchar *pstart = NULL; int revx = 0, revy = 0; c0 = sptr[0]; c1 = sptr[1]; c2 = sptr[2]; c3 = sptr[3]; // iterate meanshift procedure for(iter = 0; iter < maxIter; iter++ ) { int count = 0; int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) int minx = x0 - sp; int miny = y0 - sp; int maxx = x0 + sp; int maxy = y0 + sp; //deal with the image boundary if(minx < 0) minx = 0; if(miny < 0) miny = 0; if(maxx >= size.width) maxx = size.width - 1; if(maxy >= size.height) maxy = size.height - 1; if(iter == 0) { pstart = sptr; } else { pstart = pstart + revy * sstep + (revx << 2); //point to the new position } ptr = pstart; ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2)) { int rowCount = 0; int x = minx; #if CV_ENABLE_UNROLLED for( ; x + 4 <= maxx; x += 4, ptr += 16) { int t0, t1, t2; t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x; rowCount++; } t0 = ptr[4], t1 = ptr[5], t2 = ptr[6]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 1; rowCount++; } t0 = ptr[8], t1 = ptr[9], t2 = ptr[10]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 2; rowCount++; } t0 = ptr[12], t1 = ptr[13], t2 = ptr[14]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 3; rowCount++; } } #endif for(; x <= maxx; x++, ptr += 4) { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x; rowCount++; } } if(rowCount == 0) continue; count += rowCount; sy += y * rowCount; } if( count == 0 ) break; int x1 = sx / count; int y1 = sy / count; s0 = s0 / count; s1 = s1 / count; s2 = s2 / count; bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) + tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps); //revise the pointer corresponding to the new (y0,x0) revx = x1 - x0; revy = y1 - y0; x0 = x1; y0 = y1; c0 = s0; c1 = s1; c2 = s2; if( stopFlag ) break; } //for iter dptr[0] = (uchar)c0; dptr[1] = (uchar)c1; dptr[2] = (uchar)c2; dptr[3] = (uchar)c3; COOR coor; coor.x = static_cast(x0); coor.y = static_cast(y0); return coor; } static void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit) { if( src_roi.empty() ) CV_Error( Error::StsBadArg, "The input image is empty" ); if( src_roi.depth() != CV_8U || src_roi.channels() != 4 ) CV_Error( Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); dst_roi.create(src_roi.size(), src_roi.type()); CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) ); CV_Assert( !(dst_roi.step & 0x3) ); if( !(crit.type & cv::TermCriteria::MAX_ITER) ) crit.maxCount = 5; int maxIter = std::min(std::max(crit.maxCount, 1), 100); float eps; if( !(crit.type & cv::TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(crit.epsilon, 0.0); int tab[512]; for(int i = 0; i < 512; i++) tab[i] = (i - 255) * (i - 255); uchar *sptr = src_roi.data; uchar *dptr = dst_roi.data; int sstep = (int)src_roi.step; int dstep = (int)dst_roi.step; cv::Size size = src_roi.size(); for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), dptr += dstep - (size.width << 2)) { for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4) { do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); } } } PERFTEST(meanShiftFiltering) { int sp = 5, sr = 6; Mat src, dst, ocl_dst; ocl::oclMat d_src, d_dst; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { SUBTEST << size << 'x' << size << "; 8UC3 vs 8UC4"; gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256)); cv::TermCriteria crit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1); meanShiftFiltering_(src, dst, sp, sr, crit); CPU_ON; meanShiftFiltering_(src, dst, sp, sr, crit); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::meanShiftFiltering(d_src, d_dst, sp, sr, crit); WARMUP_OFF; GPU_ON; ocl::meanShiftFiltering(d_src, d_dst, sp, sr); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::meanShiftFiltering(d_src, d_dst, sp, sr); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 0.0); } } void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit) { if (src_roi.empty()) { CV_Error(Error::StsBadArg, "The input image is empty"); } if (src_roi.depth() != CV_8U || src_roi.channels() != 4) { CV_Error(Error::StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported"); } dst_roi.create(src_roi.size(), src_roi.type()); dstCoor_roi.create(src_roi.size(), CV_16SC2); CV_Assert((src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) && (src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows)); CV_Assert(!(dstCoor_roi.step & 0x3)); if (!(crit.type & cv::TermCriteria::MAX_ITER)) { crit.maxCount = 5; } int maxIter = std::min(std::max(crit.maxCount, 1), 100); float eps; if (!(crit.type & cv::TermCriteria::EPS)) { eps = 1.f; } eps = (float)std::max(crit.epsilon, 0.0); int tab[512]; for (int i = 0; i < 512; i++) { tab[i] = (i - 255) * (i - 255); } uchar *sptr = src_roi.data; uchar *dptr = dst_roi.data; short *dCoorptr = (short *)dstCoor_roi.data; int sstep = (int)src_roi.step; int dstep = (int)dst_roi.step; int dCoorstep = (int)dstCoor_roi.step >> 1; cv::Size size = src_roi.size(); for (int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1)) { for (int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2) { *((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); } } } PERFTEST(meanShiftProc) { Mat src; vector dst(2), ocl_dst(2); ocl::oclMat d_src, d_dst, d_dstCoor; TermCriteria crit(TermCriteria::COUNT + TermCriteria::EPS, 5, 1); for (int size = Min_Size; size <= Max_Size; size *= Multiple) { SUBTEST << size << 'x' << size << "; 8UC4 and CV_16SC2 "; gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256)); meanShiftProc_(src, dst[0], dst[1], 5, 6, crit); CPU_ON; meanShiftProc_(src, dst[0], dst[1], 5, 6, crit); CPU_OFF; d_src.upload(src); WARMUP_ON; ocl::meanShiftProc(d_src, d_dst, d_dstCoor, 5, 6, crit); WARMUP_OFF; GPU_ON; ocl::meanShiftProc(d_src, d_dst, d_dstCoor, 5, 6, crit); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::meanShiftProc(d_src, d_dst, d_dstCoor, 5, 6, crit); d_dst.download(ocl_dst[0]); d_dstCoor.download(ocl_dst[1]); GPU_FULL_OFF; vector eps(2, 0.); TestSystem::instance().ExpectMatsNear(dst, ocl_dst, eps); } } ///////////// remap//////////////////////// PERFTEST(remap) { Mat src, dst, xmap, ymap, ocl_dst; ocl::oclMat d_src, d_dst, d_xmap, d_ymap; int all_type[] = {CV_8UC1, CV_8UC4}; std::string type_name[] = {"CV_8UC1", "CV_8UC4"}; int interpolation = INTER_LINEAR; int borderMode = BORDER_CONSTANT; for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t t = 0; t < sizeof(all_type) / sizeof(int); t++) { SUBTEST << size << 'x' << size << "; src " << type_name[t] << "; map CV_32FC1"; gen(src, size, size, all_type[t], 0, 256); xmap.create(size, size, CV_32FC1); dst.create(size, size, CV_32FC1); ymap.create(size, size, CV_32FC1); for (int i = 0; i < size; ++i) { float *xmap_row = xmap.ptr(i); float *ymap_row = ymap.ptr(i); for (int j = 0; j < size; ++j) { xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f; ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f; } } remap(src, dst, xmap, ymap, interpolation, borderMode); CPU_ON; remap(src, dst, xmap, ymap, interpolation, borderMode); CPU_OFF; d_src.upload(src); d_dst.upload(dst); d_xmap.upload(xmap); d_ymap.upload(ymap); WARMUP_ON; ocl::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); WARMUP_OFF; GPU_ON; ocl::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); GPU_OFF; GPU_FULL_ON; d_src.upload(src); ocl::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); d_dst.download(ocl_dst); GPU_FULL_OFF; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 2.0); } } } ///////////// CLAHE //////////////////////// PERFTEST(CLAHE) { Mat src, dst, ocl_dst; cv::ocl::oclMat d_src, d_dst; int all_type[] = {CV_8UC1}; std::string type_name[] = {"CV_8UC1"}; double clipLimit = 40.0; cv::Ptr clahe = cv::createCLAHE(clipLimit); cv::Ptr d_clahe = cv::ocl::createCLAHE(clipLimit); for (int size = Min_Size; size <= Max_Size; size *= Multiple) { for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++) { SUBTEST << size << 'x' << size << "; " << type_name[j] ; gen(src, size, size, all_type[j], 0, 256); CPU_ON; clahe->apply(src, dst); CPU_OFF; d_src.upload(src); WARMUP_ON; d_clahe->apply(d_src, d_dst); WARMUP_OFF; ocl_dst = d_dst; TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 1.0); GPU_ON; d_clahe->apply(d_src, d_dst); GPU_OFF; GPU_FULL_ON; d_src.upload(src); d_clahe->apply(d_src, d_dst); d_dst.download(dst); GPU_FULL_OFF; } } }