// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" #include "ref_reduce_arg.impl.hpp" #include namespace opencv_test { namespace { const int ARITHM_NTESTS = 1000; const int ARITHM_RNG_SEED = -1; const int ARITHM_MAX_CHANNELS = 4; const int ARITHM_MAX_NDIMS = 4; const int ARITHM_MAX_SIZE_LOG = 10; struct BaseElemWiseOp { enum { FIX_ALPHA=1, FIX_BETA=2, FIX_GAMMA=4, REAL_GAMMA=8, SUPPORT_MASK=16, SCALAR_OUTPUT=32, SUPPORT_MULTICHANNELMASK=64 }; BaseElemWiseOp(int _ninputs, int _flags, double _alpha, double _beta, Scalar _gamma=Scalar::all(0), int _context=1) : ninputs(_ninputs), flags(_flags), alpha(_alpha), beta(_beta), gamma(_gamma), context(_context) {} BaseElemWiseOp() { flags = 0; alpha = beta = 0; gamma = Scalar::all(0); ninputs = 0; context = 1; } virtual ~BaseElemWiseOp() {} virtual void op(const vector&, Mat&, const Mat&) {} virtual void refop(const vector&, Mat&, const Mat&) {} virtual void getValueRange(int depth, double& minval, double& maxval) { minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.; maxval = depth < CV_32S ? cvtest::getMaxVal(depth) : depth == CV_32S ? 1000000 : 1000.; } virtual void getRandomSize(RNG& rng, vector& size) { cvtest::randomSize(rng, 2, ARITHM_MAX_NDIMS, ARITHM_MAX_SIZE_LOG, size); } virtual int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL_BUT_8S, 1, ninputs > 1 ? ARITHM_MAX_CHANNELS : 4); } virtual double getMaxErr(int depth) { return depth < CV_32F || depth == CV_32U || depth == CV_64U || depth == CV_64S ? 1 : depth == CV_16F || depth == CV_16BF ? 1e-2 : depth == CV_32F ? 1e-5 : 1e-12; } virtual void generateScalars(int depth, RNG& rng) { const double m = 3.; if( !(flags & FIX_ALPHA) ) { alpha = exp(rng.uniform(-0.5, 0.1)*m*2*CV_LOG2); alpha *= rng.uniform(0, 2) ? 1 : -1; } if( !(flags & FIX_BETA) ) { beta = exp(rng.uniform(-0.5, 0.1)*m*2*CV_LOG2); beta *= rng.uniform(0, 2) ? 1 : -1; } if( !(flags & FIX_GAMMA) ) { for( int i = 0; i < 4; i++ ) { gamma[i] = exp(rng.uniform(-1, 6)*m*CV_LOG2); gamma[i] *= rng.uniform(0, 2) ? 1 : -1; } if( flags & REAL_GAMMA ) gamma = Scalar::all(gamma[0]); } if( depth == CV_32F ) { Mat fl, db; db = Mat(1, 1, CV_64F, &alpha); db.convertTo(fl, CV_32F); fl.convertTo(db, CV_64F); db = Mat(1, 1, CV_64F, &beta); db.convertTo(fl, CV_32F); fl.convertTo(db, CV_64F); db = Mat(1, 4, CV_64F, &gamma[0]); db.convertTo(fl, CV_32F); fl.convertTo(db, CV_64F); } } int ninputs; int flags; double alpha; double beta; Scalar gamma; int context; }; static const _OutputArray::DepthMask baseArithmTypeMask = _OutputArray::DepthMask( _OutputArray::DEPTH_MASK_8U | _OutputArray::DEPTH_MASK_16U | _OutputArray::DEPTH_MASK_16S | _OutputArray::DEPTH_MASK_32S | _OutputArray::DEPTH_MASK_32F | _OutputArray::DEPTH_MASK_64F); struct BaseArithmOp : public BaseElemWiseOp { BaseArithmOp(int _ninputs, int _flags, double _alpha, double _beta, Scalar _gamma=Scalar::all(0)) : BaseElemWiseOp(_ninputs, _flags, _alpha, _beta, _gamma) {} int getRandomType(RNG& rng) { return cvtest::randomType(rng, baseArithmTypeMask, 1, ninputs > 1 ? ARITHM_MAX_CHANNELS : 4); } }; struct BaseAddOp : public BaseArithmOp { BaseAddOp(int _ninputs, int _flags, double _alpha, double _beta, Scalar _gamma=Scalar::all(0)) : BaseArithmOp(_ninputs, _flags, _alpha, _beta, _gamma) {} void refop(const vector& src, Mat& dst, const Mat& mask) { Mat temp; if( !mask.empty() ) { cvtest::add(src[0], alpha, src.size() > 1 ? src[1] : Mat(), beta, gamma, temp, src[0].type()); cvtest::copy(temp, dst, mask); } else cvtest::add(src[0], alpha, src.size() > 1 ? src[1] : Mat(), beta, gamma, dst, src[0].type()); } }; struct AddOp : public BaseAddOp { AddOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( mask.empty() ) cv::add(src[0], src[1], dst); else cv::add(src[0], src[1], dst, mask); } }; struct SubOp : public BaseAddOp { SubOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, -1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( mask.empty() ) cv::subtract(src[0], src[1], dst); else cv::subtract(src[0], src[1], dst, mask); } }; struct AddSOp : public BaseAddOp { AddSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, 1, 0, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( mask.empty() ) cv::add(src[0], gamma, dst); else cv::add(src[0], gamma, dst, mask); } }; struct SubRSOp : public BaseAddOp { SubRSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA+SUPPORT_MASK, -1, 0, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( mask.empty() ) cv::subtract(gamma, src[0], dst); else cv::subtract(gamma, src[0], dst, mask); } }; struct ScaleAddOp : public BaseAddOp { ScaleAddOp() : BaseAddOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::scaleAdd(src[0], alpha, src[1], dst); } double getMaxErr(int depth) { return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-4 : 1e-12; } }; struct AddWeightedOp : public BaseAddOp { AddWeightedOp() : BaseAddOp(2, REAL_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::addWeighted(src[0], alpha, src[1], beta, gamma[0], dst); } double getMaxErr(int depth) { return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-10; } }; struct MulOp : public BaseArithmOp { MulOp() : BaseArithmOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void getValueRange(int depth, double& minval, double& maxval) { minval = depth < CV_32S ? cvtest::getMinVal(depth) : depth == CV_32S ? -1000000 : -1000.; maxval = depth < CV_32S ? cvtest::getMaxVal(depth) : depth == CV_32S ? 1000000 : 1000.; minval = std::max(minval, -30000.); maxval = std::min(maxval, 30000.); } void op(const vector& src, Mat& dst, const Mat&) { cv::multiply(src[0], src[1], dst, alpha); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::multiply(src[0], src[1], dst, alpha); } double getMaxErr(int depth) { return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12; } }; struct DivOp : public BaseArithmOp { DivOp() : BaseArithmOp(2, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::divide(src[0], src[1], dst, alpha); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::divide(src[0], src[1], dst, alpha); } double getMaxErr(int depth) { return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12; } }; struct RecipOp : public BaseArithmOp { RecipOp() : BaseArithmOp(1, FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::divide(alpha, src[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::divide(Mat(), src[0], dst, alpha); } double getMaxErr(int depth) { return depth <= CV_32S ? 2 : depth < CV_64F ? 1e-5 : 1e-12; } }; struct AbsDiffOp : public BaseAddOp { AbsDiffOp() : BaseAddOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, -1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { absdiff(src[0], src[1], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::add(src[0], 1, src[1], -1, Scalar::all(0), dst, src[0].type(), true); } }; struct AbsDiffSOp : public BaseAddOp { AbsDiffSOp() : BaseAddOp(1, FIX_ALPHA+FIX_BETA, 1, 0, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { absdiff(src[0], gamma, dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::add(src[0], 1, Mat(), 0, -gamma, dst, src[0].type(), true); } }; struct LogicOp : public BaseElemWiseOp { LogicOp(char _opcode) : BaseElemWiseOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK, 1, 1, Scalar::all(0)), opcode(_opcode) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( opcode == '&' ) cv::bitwise_and(src[0], src[1], dst, mask); else if( opcode == '|' ) cv::bitwise_or(src[0], src[1], dst, mask); else cv::bitwise_xor(src[0], src[1], dst, mask); } void refop(const vector& src, Mat& dst, const Mat& mask) { Mat temp; if( !mask.empty() ) { cvtest::logicOp(src[0], src[1], temp, opcode); cvtest::copy(temp, dst, mask); } else cvtest::logicOp(src[0], src[1], dst, opcode); } double getMaxErr(int) { return 0; } char opcode; }; struct LogicSOp : public BaseElemWiseOp { LogicSOp(char _opcode) : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+(_opcode != '~' ? SUPPORT_MASK : 0), 1, 1, Scalar::all(0)), opcode(_opcode) {} void op(const vector& src, Mat& dst, const Mat& mask) { if( opcode == '&' ) cv::bitwise_and(src[0], gamma, dst, mask); else if( opcode == '|' ) cv::bitwise_or(src[0], gamma, dst, mask); else if( opcode == '^' ) cv::bitwise_xor(src[0], gamma, dst, mask); else cv::bitwise_not(src[0], dst); } void refop(const vector& src, Mat& dst, const Mat& mask) { Mat temp; if( !mask.empty() ) { cvtest::logicOp(src[0], gamma, temp, opcode); cvtest::copy(temp, dst, mask); } else cvtest::logicOp(src[0], gamma, dst, opcode); } double getMaxErr(int) { return 0; } char opcode; }; struct MinOp : public BaseArithmOp { MinOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::min(src[0], src[1], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::min(src[0], src[1], dst); } double getMaxErr(int) { return 0; } }; struct MaxOp : public BaseArithmOp { MaxOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::max(src[0], src[1], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::max(src[0], src[1], dst); } double getMaxErr(int) { return 0; } }; struct MinSOp : public BaseArithmOp { MinSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::min(src[0], gamma[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::min(src[0], gamma[0], dst); } double getMaxErr(int) { return 0; } }; struct MaxSOp : public BaseArithmOp { MaxSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::max(src[0], gamma[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::max(src[0], gamma[0], dst); } double getMaxErr(int) { return 0; } }; struct CmpOp : public BaseArithmOp { CmpOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) { cmpop = 0; } void generateScalars(int depth, RNG& rng) { BaseElemWiseOp::generateScalars(depth, rng); cmpop = rng.uniform(0, 6); } void op(const vector& src, Mat& dst, const Mat&) { cv::compare(src[0], src[1], dst, cmpop); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::compare(src[0], src[1], dst, cmpop); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, baseArithmTypeMask, 1, 1); } double getMaxErr(int) { return 0; } int cmpop; }; struct CmpSOp : public BaseArithmOp { CmpSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) { cmpop = 0; } void generateScalars(int depth, RNG& rng) { BaseElemWiseOp::generateScalars(depth, rng); cmpop = rng.uniform(0, 6); if( depth < CV_32F ) gamma[0] = cvRound(gamma[0]); } void op(const vector& src, Mat& dst, const Mat&) { cv::compare(src[0], gamma[0], dst, cmpop); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::compare(src[0], gamma[0], dst, cmpop); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, baseArithmTypeMask, 1, 1); } double getMaxErr(int) { return 0; } int cmpop; }; struct CopyOp : public BaseElemWiseOp { CopyOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SUPPORT_MULTICHANNELMASK, 1, 1, Scalar::all(0)) { } void op(const vector& src, Mat& dst, const Mat& mask) { src[0].copyTo(dst, mask); } void refop(const vector& src, Mat& dst, const Mat& mask) { cvtest::copy(src[0], dst, mask); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS); } double getMaxErr(int) { return 0; } }; struct SetOp : public BaseElemWiseOp { SetOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+SUPPORT_MASK+SUPPORT_MULTICHANNELMASK, 1, 1, Scalar::all(0)) {} void op(const vector&, Mat& dst, const Mat& mask) { dst.setTo(gamma, mask); } void refop(const vector&, Mat& dst, const Mat& mask) { cvtest::set(dst, gamma, mask); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS); } double getMaxErr(int) { return 0; } }; template static void inRangeS_(const _Tp* src, const _WTp* a, const _WTp* b, uchar* dst, size_t total, int cn) { size_t i; int c; for( i = 0; i < total; i++ ) { _Tp val = src[i*cn]; dst[i] = (a[0] <= val && val <= b[0]) ? uchar(255) : 0; } for( c = 1; c < cn; c++ ) { for( i = 0; i < total; i++ ) { _Tp val = src[i*cn + c]; dst[i] = a[c] <= val && val <= b[c] ? dst[i] : 0; } } } template static void inRange_(const _Tp* src, const _Tp* a, const _Tp* b, uchar* dst, size_t total, int cn) { size_t i; int c; for( i = 0; i < total; i++ ) { _Tp val = src[i*cn]; dst[i] = a[i*cn] <= val && val <= b[i*cn] ? 255 : 0; } for( c = 1; c < cn; c++ ) { for( i = 0; i < total; i++ ) { _Tp val = src[i*cn + c]; dst[i] = a[i*cn + c] <= val && val <= b[i*cn + c] ? dst[i] : 0; } } } namespace reference { static void inRange(const Mat& src, const Mat& lb, const Mat& rb, Mat& dst) { CV_Assert( src.type() == lb.type() && src.type() == rb.type() && src.size == lb.size && src.size == rb.size ); dst.create( src.dims, &src.size[0], CV_8U ); const Mat *arrays[]={&src, &lb, &rb, &dst, 0}; Mat planes[4]; NAryMatIterator it(arrays, planes); size_t total = planes[0].total(); size_t i, nplanes = it.nplanes; int depth = src.depth(), cn = src.channels(); for( i = 0; i < nplanes; i++, ++it ) { const uchar* sptr = planes[0].ptr(); const uchar* aptr = planes[1].ptr(); const uchar* bptr = planes[2].ptr(); uchar* dptr = planes[3].ptr(); switch( depth ) { case CV_8U: inRange_((const uchar*)sptr, (const uchar*)aptr, (const uchar*)bptr, dptr, total, cn); break; case CV_8S: inRange_((const schar*)sptr, (const schar*)aptr, (const schar*)bptr, dptr, total, cn); break; case CV_16U: inRange_((const ushort*)sptr, (const ushort*)aptr, (const ushort*)bptr, dptr, total, cn); break; case CV_16S: inRange_((const short*)sptr, (const short*)aptr, (const short*)bptr, dptr, total, cn); break; case CV_32S: inRange_((const int*)sptr, (const int*)aptr, (const int*)bptr, dptr, total, cn); break; case CV_32F: inRange_((const float*)sptr, (const float*)aptr, (const float*)bptr, dptr, total, cn); break; case CV_64F: inRange_((const double*)sptr, (const double*)aptr, (const double*)bptr, dptr, total, cn); break; default: CV_Error(CV_StsUnsupportedFormat, ""); } } } static void inRangeS(const Mat& src, const Scalar& lb, const Scalar& rb, Mat& dst) { dst.create( src.dims, &src.size[0], CV_8U ); const Mat *arrays[]={&src, &dst, 0}; Mat planes[2]; NAryMatIterator it(arrays, planes); size_t total = planes[0].total(); size_t i, nplanes = it.nplanes; int depth = src.depth(), cn = src.channels(); union { double d[4]; float f[4]; int i[4];} lbuf, rbuf; int wtype = CV_MAKETYPE(depth <= CV_32S ? CV_32S : depth, cn); scalarToRawData(lb, lbuf.d, wtype, cn); scalarToRawData(rb, rbuf.d, wtype, cn); for( i = 0; i < nplanes; i++, ++it ) { const uchar* sptr = planes[0].ptr(); uchar* dptr = planes[1].ptr(); switch( depth ) { case CV_8U: inRangeS_((const uchar*)sptr, lbuf.i, rbuf.i, dptr, total, cn); break; case CV_8S: inRangeS_((const schar*)sptr, lbuf.i, rbuf.i, dptr, total, cn); break; case CV_16U: inRangeS_((const ushort*)sptr, lbuf.i, rbuf.i, dptr, total, cn); break; case CV_16S: inRangeS_((const short*)sptr, lbuf.i, rbuf.i, dptr, total, cn); break; case CV_32S: inRangeS_((const int*)sptr, lbuf.i, rbuf.i, dptr, total, cn); break; case CV_32F: inRangeS_((const float*)sptr, lbuf.f, rbuf.f, dptr, total, cn); break; case CV_64F: inRangeS_((const double*)sptr, lbuf.d, rbuf.d, dptr, total, cn); break; default: CV_Error(CV_StsUnsupportedFormat, ""); } } } } // namespace CVTEST_GUARD_SYMBOL(inRange) struct InRangeSOp : public BaseArithmOp { InRangeSOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::inRange(src[0], gamma, gamma1, dst); } void refop(const vector& src, Mat& dst, const Mat&) { reference::inRangeS(src[0], gamma, gamma1, dst); } double getMaxErr(int) { return 0; } void generateScalars(int depth, RNG& rng) { BaseElemWiseOp::generateScalars(depth, rng); Scalar temp = gamma; BaseElemWiseOp::generateScalars(depth, rng); for( int i = 0; i < 4; i++ ) { gamma1[i] = std::max(gamma[i], temp[i]); gamma[i] = std::min(gamma[i], temp[i]); } } Scalar gamma1; }; struct InRangeOp : public BaseArithmOp { InRangeOp() : BaseArithmOp(3, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { Mat lb, rb; cvtest::min(src[1], src[2], lb); cvtest::max(src[1], src[2], rb); cv::inRange(src[0], lb, rb, dst); } void refop(const vector& src, Mat& dst, const Mat&) { Mat lb, rb; cvtest::min(src[1], src[2], lb); cvtest::max(src[1], src[2], rb); reference::inRange(src[0], lb, rb, dst); } double getMaxErr(int) { return 0; } }; namespace reference { template struct SoftType; template<> struct SoftType { typedef softfloat type; }; template<> struct SoftType { typedef softdouble type; }; template static void finiteMask_(const _Tp *src, uchar *dst, size_t total, int cn) { for(size_t i = 0; i < total; i++ ) { bool good = true; for (int c = 0; c < cn; c++) { _Tp val = src[i * cn + c]; typename SoftType<_Tp>::type sval(val); good = good && !sval.isNaN() && !sval.isInf(); } dst[i] = good ? 255 : 0; } } static void finiteMask(const Mat& src, Mat& dst) { dst.create(src.dims, &src.size[0], CV_8UC1); const Mat *arrays[]={&src, &dst, 0}; Mat planes[2]; NAryMatIterator it(arrays, planes); size_t total = planes[0].total(); size_t i, nplanes = it.nplanes; int depth = src.depth(), cn = src.channels(); for( i = 0; i < nplanes; i++, ++it ) { const uchar* sptr = planes[0].ptr(); uchar* dptr = planes[1].ptr(); switch( depth ) { case CV_32F: finiteMask_((const float*)sptr, dptr, total, cn); break; case CV_64F: finiteMask_((const double*)sptr, dptr, total, cn); break; } } } } struct FiniteMaskOp : public BaseElemWiseOp { FiniteMaskOp() : BaseElemWiseOp(1, 0, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::finiteMask(src[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { reference::finiteMask(src[0], dst); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, 4); } double getMaxErr(int) { return 0; } }; struct ConvertScaleOp : public BaseElemWiseOp { ConvertScaleOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), ddepth(0) { } void op(const vector& src, Mat& dst, const Mat&) { src[0].convertTo(dst, ddepth, alpha, gamma[0]); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::convert(src[0], dst, CV_MAKETYPE(ddepth, src[0].channels()), alpha, gamma[0]); } int getRandomType(RNG& rng) { int srctype = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ARITHM_MAX_CHANNELS); ddepth = cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, 1); return srctype; } double getMaxErr(int) { return ddepth <= CV_32S || ddepth == CV_32U || ddepth == CV_64U || ddepth == CV_64S ? 2 : ddepth == CV_64F ? 1e-12 : ddepth == CV_Bool ? 0 : ddepth == CV_16BF ? 1e-2 : 2e-3; } void generateScalars(int depth, RNG& rng) { if( rng.uniform(0, 2) ) BaseElemWiseOp::generateScalars(depth, rng); else { alpha = 1; gamma = Scalar::all(0); } } int ddepth; }; struct ConvertScaleFp16Op : public BaseElemWiseOp { ConvertScaleFp16Op() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)), nextRange(0) { } void op(const vector& src, Mat& dst, const Mat&) { Mat m; convertFp16(src[0], m); convertFp16(m, dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::copy(src[0], dst); } int getRandomType(RNG&) { // 0: FP32 -> FP16 -> FP32 // 1: FP16 -> FP32 -> FP16 int srctype = (nextRange & 1) == 0 ? CV_32F : CV_16S; return srctype; } void getValueRange(int, double& minval, double& maxval) { // 0: FP32 -> FP16 -> FP32 // 1: FP16 -> FP32 -> FP16 if( (nextRange & 1) == 0 ) { // largest integer number that fp16 can express exactly maxval = 2048.f; minval = -maxval; } else { // 0: positive number range // 1: negative number range if( (nextRange & 2) == 0 ) { minval = 0; // 0x0000 +0 maxval = 31744; // 0x7C00 +Inf } else { minval = -32768; // 0x8000 -0 maxval = -1024; // 0xFC00 -Inf } } } double getMaxErr(int) { return 0.5f; } void generateScalars(int, RNG& rng) { nextRange = rng.next(); } int nextRange; }; struct ConvertScaleAbsOp : public BaseElemWiseOp { ConvertScaleAbsOp() : BaseElemWiseOp(1, FIX_BETA+REAL_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector& src, Mat& dst, const Mat&) { cv::convertScaleAbs(src[0], dst, alpha, gamma[0]); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::add(src[0], alpha, Mat(), 0, Scalar::all(gamma[0]), dst, CV_8UC(src[0].channels()), true); } int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_ALL, 1, ninputs > 1 ? ARITHM_MAX_CHANNELS : 4); } double getMaxErr(int) { return 1; } void generateScalars(int depth, RNG& rng) { if( rng.uniform(0, 2) ) BaseElemWiseOp::generateScalars(depth, rng); else { alpha = 1; gamma = Scalar::all(0); } } }; namespace reference { static void flip(const Mat& src, Mat& dst, int flipcode) { CV_Assert(src.dims <= 2); dst.createSameSize(src, src.type()); int i, j, k, esz = (int)src.elemSize(), width = src.cols*esz; for( i = 0; i < dst.rows; i++ ) { const uchar* sptr = src.ptr(flipcode == 1 ? i : dst.rows - i - 1); uchar* dptr = dst.ptr(i); if( flipcode == 0 ) memcpy(dptr, sptr, width); else { for( j = 0; j < width; j += esz ) for( k = 0; k < esz; k++ ) dptr[j + k] = sptr[width - j - esz + k]; } } } static void setIdentity(Mat& dst, const Scalar& s) { CV_Assert( dst.dims == 2 && dst.channels() <= 4 ); double buf[4]; scalarToRawData(s, buf, dst.type(), 0); int i, k, esz = (int)dst.elemSize(), width = dst.cols*esz; for( i = 0; i < dst.rows; i++ ) { uchar* dptr = dst.ptr(i); memset( dptr, 0, width ); if( i < dst.cols ) for( k = 0; k < esz; k++ ) dptr[i*esz + k] = ((uchar*)buf)[k]; } } } // namespace struct FlipOp : public BaseElemWiseOp { FlipOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) { flipcode = 0; } void getRandomSize(RNG& rng, vector& size) { cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size); } void op(const vector& src, Mat& dst, const Mat&) { cv::flip(src[0], dst, flipcode); } void refop(const vector& src, Mat& dst, const Mat&) { reference::flip(src[0], dst, flipcode); } void generateScalars(int, RNG& rng) { flipcode = rng.uniform(0, 3) - 1; } double getMaxErr(int) { return 0; } int flipcode; }; struct TransposeOp : public BaseElemWiseOp { TransposeOp() : BaseElemWiseOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void getRandomSize(RNG& rng, vector& size) { cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size); } void op(const vector& src, Mat& dst, const Mat&) { cv::transpose(src[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { cvtest::transpose(src[0], dst); } double getMaxErr(int) { return 0; } }; struct SetIdentityOp : public BaseElemWiseOp { SetIdentityOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA, 1, 1, Scalar::all(0)) {} void getRandomSize(RNG& rng, vector& size) { cvtest::randomSize(rng, 2, 2, ARITHM_MAX_SIZE_LOG, size); } void op(const vector&, Mat& dst, const Mat&) { cv::setIdentity(dst, gamma); } void refop(const vector&, Mat& dst, const Mat&) { reference::setIdentity(dst, gamma); } double getMaxErr(int) { return 0; } }; struct SetZeroOp : public BaseElemWiseOp { SetZeroOp() : BaseElemWiseOp(0, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} void op(const vector&, Mat& dst, const Mat&) { dst = Scalar::all(0); } void refop(const vector&, Mat& dst, const Mat&) { cvtest::set(dst, Scalar::all(0)); } double getMaxErr(int) { return 0; } }; namespace reference { static void exp(const Mat& src, Mat& dst) { dst.create( src.dims, &src.size[0], src.type() ); const Mat *arrays[]={&src, &dst, 0}; Mat planes[2]; NAryMatIterator it(arrays, planes); size_t j, total = planes[0].total()*src.channels(); size_t i, nplanes = it.nplanes; int depth = src.depth(); for( i = 0; i < nplanes; i++, ++it ) { const uchar* sptr = planes[0].ptr(); uchar* dptr = planes[1].ptr(); if( depth == CV_32F ) { for( j = 0; j < total; j++ ) ((float*)dptr)[j] = std::exp(((const float*)sptr)[j]); } else if( depth == CV_64F ) { for( j = 0; j < total; j++ ) ((double*)dptr)[j] = std::exp(((const double*)sptr)[j]); } } } static void log(const Mat& src, Mat& dst) { dst.create( src.dims, &src.size[0], src.type() ); const Mat *arrays[]={&src, &dst, 0}; Mat planes[2]; NAryMatIterator it(arrays, planes); size_t j, total = planes[0].total()*src.channels(); size_t i, nplanes = it.nplanes; int depth = src.depth(); for( i = 0; i < nplanes; i++, ++it ) { const uchar* sptr = planes[0].ptr(); uchar* dptr = planes[1].ptr(); if( depth == CV_32F ) { for( j = 0; j < total; j++ ) ((float*)dptr)[j] = (float)std::log(fabs(((const float*)sptr)[j])); } else if( depth == CV_64F ) { for( j = 0; j < total; j++ ) ((double*)dptr)[j] = std::log(fabs(((const double*)sptr)[j])); } } } } // namespace struct ExpOp : public BaseArithmOp { ExpOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS); } void getValueRange(int depth, double& minval, double& maxval) { maxval = depth == CV_32F ? 50 : 100; minval = -maxval; } void op(const vector& src, Mat& dst, const Mat&) { cv::exp(src[0], dst); } void refop(const vector& src, Mat& dst, const Mat&) { reference::exp(src[0], dst); } double getMaxErr(int depth) { return depth == CV_32F ? 1e-5 : 1e-12; } }; struct LogOp : public BaseArithmOp { LogOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) {} int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, ARITHM_MAX_CHANNELS); } void getValueRange(int depth, double& minval, double& maxval) { maxval = depth == CV_32F ? 50 : 100; minval = -maxval; } void op(const vector& src, Mat& dst, const Mat&) { Mat temp; reference::exp(src[0], temp); cv::log(temp, dst); } void refop(const vector& src, Mat& dst, const Mat&) { Mat temp; reference::exp(src[0], temp); reference::log(temp, dst); } double getMaxErr(int depth) { return depth == CV_32F ? 1e-5 : 1e-12; } }; namespace reference { static void cartToPolar(const Mat& mx, const Mat& my, Mat& mmag, Mat& mangle, bool angleInDegrees) { CV_Assert( (mx.type() == CV_32F || mx.type() == CV_64F) && mx.type() == my.type() && mx.size == my.size ); mmag.create( mx.dims, &mx.size[0], mx.type() ); mangle.create( mx.dims, &mx.size[0], mx.type() ); const Mat *arrays[]={&mx, &my, &mmag, &mangle, 0}; Mat planes[4]; NAryMatIterator it(arrays, planes); size_t j, total = planes[0].total(); size_t i, nplanes = it.nplanes; int depth = mx.depth(); double scale = angleInDegrees ? 180/CV_PI : 1; for( i = 0; i < nplanes; i++, ++it ) { if( depth == CV_32F ) { const float* xptr = planes[0].ptr(); const float* yptr = planes[1].ptr(); float* mptr = planes[2].ptr(); float* aptr = planes[3].ptr(); for( j = 0; j < total; j++ ) { mptr[j] = std::sqrt(xptr[j]*xptr[j] + yptr[j]*yptr[j]); double a = atan2((double)yptr[j], (double)xptr[j]); if( a < 0 ) a += CV_PI*2; aptr[j] = (float)(a*scale); } } else { const double* xptr = planes[0].ptr(); const double* yptr = planes[1].ptr(); double* mptr = planes[2].ptr(); double* aptr = planes[3].ptr(); for( j = 0; j < total; j++ ) { mptr[j] = std::sqrt(xptr[j]*xptr[j] + yptr[j]*yptr[j]); double a = atan2(yptr[j], xptr[j]); if( a < 0 ) a += CV_PI*2; aptr[j] = a*scale; } } } } } // namespace struct CartToPolarToCartOp : public BaseArithmOp { CartToPolarToCartOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)) { context = 3; angleInDegrees = true; } int getRandomType(RNG& rng) { return cvtest::randomType(rng, _OutputArray::DEPTH_MASK_FLT, 1, 1); } void op(const vector& src, Mat& dst, const Mat&) { Mat mag, angle, x, y; cv::cartToPolar(src[0], src[1], mag, angle, angleInDegrees); cv::polarToCart(mag, angle, x, y, angleInDegrees); Mat msrc[] = {mag, angle, x, y}; int pairs[] = {0, 0, 1, 1, 2, 2, 3, 3}; dst.create(src[0].dims, src[0].size, CV_MAKETYPE(src[0].depth(), 4)); cv::mixChannels(msrc, 4, &dst, 1, pairs, 4); } void refop(const vector& src, Mat& dst, const Mat&) { Mat mag, angle; reference::cartToPolar(src[0], src[1], mag, angle, angleInDegrees); Mat msrc[] = {mag, angle, src[0], src[1]}; int pairs[] = {0, 0, 1, 1, 2, 2, 3, 3}; dst.create(src[0].dims, src[0].size, CV_MAKETYPE(src[0].depth(), 4)); cv::mixChannels(msrc, 4, &dst, 1, pairs, 4); } void generateScalars(int, RNG& rng) { angleInDegrees = rng.uniform(0, 2) != 0; } double getMaxErr(int) { return 1e-3; } bool angleInDegrees; }; struct MeanOp : public BaseArithmOp { MeanOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0)) { context = 3; } void op(const vector& src, Mat& dst, const Mat& mask) { dst.create(1, 1, CV_64FC4); dst.at(0,0) = cv::mean(src[0], mask); } void refop(const vector& src, Mat& dst, const Mat& mask) { dst.create(1, 1, CV_64FC4); dst.at(0,0) = cvtest::mean(src[0], mask); } double getMaxErr(int) { return 1e-5; } }; struct SumOp : public BaseArithmOp { SumOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SCALAR_OUTPUT, 1, 1, Scalar::all(0)) { context = 3; } void op(const vector& src, Mat& dst, const Mat&) { dst.create(1, 1, CV_64FC4); dst.at(0,0) = cv::sum(src[0]); } void refop(const vector& src, Mat& dst, const Mat&) { dst.create(1, 1, CV_64FC4); dst.at(0,0) = cvtest::mean(src[0])*(double)src[0].total(); } double getMaxErr(int) { return 1e-5; } }; struct CountNonZeroOp : public BaseArithmOp { CountNonZeroOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SCALAR_OUTPUT+SUPPORT_MASK, 1, 1, Scalar::all(0)) {} int getRandomType(RNG& rng) { return cvtest::randomType(rng, baseArithmTypeMask, 1, 1); } void op(const vector& src, Mat& dst, const Mat& mask) { Mat temp; src[0].copyTo(temp); if( !mask.empty() ) temp.setTo(Scalar::all(0), mask); dst.create(1, 1, CV_32S); dst.at(0,0) = cv::countNonZero(temp); } void refop(const vector& src, Mat& dst, const Mat& mask) { Mat temp; cvtest::compare(src[0], 0, temp, CMP_NE); if( !mask.empty() ) cvtest::set(temp, Scalar::all(0), mask); dst.create(1, 1, CV_32S); dst.at(0,0) = saturate_cast(cvtest::mean(temp)[0]/255*temp.total()); } double getMaxErr(int) { return 0; } }; struct MeanStdDevOp : public BaseArithmOp { Scalar sqmeanRef; int cn; MeanStdDevOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0)) { cn = 0; context = 7; } void op(const vector& src, Mat& dst, const Mat& mask) { dst.create(1, 2, CV_64FC4); cv::meanStdDev(src[0], dst.at(0,0), dst.at(0,1), mask); } void refop(const vector& src, Mat& dst, const Mat& mask) { Mat temp; cvtest::convert(src[0], temp, CV_64F); cvtest::multiply(temp, temp, temp); Scalar mean = cvtest::mean(src[0], mask); Scalar sqmean = cvtest::mean(temp, mask); sqmeanRef = sqmean; cn = temp.channels(); for( int c = 0; c < 4; c++ ) sqmean[c] = std::sqrt(std::max(sqmean[c] - mean[c]*mean[c], 0.)); dst.create(1, 2, CV_64FC4); dst.at(0,0) = mean; dst.at(0,1) = sqmean; } double getMaxErr(int) { CV_Assert(cn > 0); double err = sqmeanRef[0]; for(int i = 1; i < cn; ++i) err = std::max(err, sqmeanRef[i]); return 3e-7 * err; } }; struct NormOp : public BaseArithmOp { NormOp() : BaseArithmOp(2, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0)) { context = 1; normType = 0; } int getRandomType(RNG& rng) { int type = cvtest::randomType(rng, baseArithmTypeMask, 1, 4); for(;;) { normType = rng.uniform(1, 8); if( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || normType == NORM_HAMMING || normType == NORM_HAMMING2 ) break; } if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { type = CV_8U; } return type; } void op(const vector& src, Mat& dst, const Mat& mask) { dst.create(1, 2, CV_64FC1); dst.at(0,0) = cv::norm(src[0], normType, mask); dst.at(0,1) = cv::norm(src[0], src[1], normType, mask); } void refop(const vector& src, Mat& dst, const Mat& mask) { dst.create(1, 2, CV_64FC1); dst.at(0,0) = cvtest::norm(src[0], normType, mask); dst.at(0,1) = cvtest::norm(src[0], src[1], normType, mask); } void generateScalars(int, RNG& /*rng*/) { } double getMaxErr(int) { return 1e-6; } int normType; }; struct MinMaxLocOp : public BaseArithmOp { MinMaxLocOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA+SUPPORT_MASK+SCALAR_OUTPUT, 1, 1, Scalar::all(0)) { context = ARITHM_MAX_NDIMS*2 + 2; } int getRandomType(RNG& rng) { return cvtest::randomType(rng, baseArithmTypeMask, 1, 1); } void saveOutput(const vector& minidx, const vector& maxidx, double minval, double maxval, Mat& dst) { int i, ndims = (int)minidx.size(); dst.create(1, ndims*2 + 2, CV_64FC1); for( i = 0; i < ndims; i++ ) { dst.at(0,i) = minidx[i]; dst.at(0,i+ndims) = maxidx[i]; } dst.at(0,ndims*2) = minval; dst.at(0,ndims*2+1) = maxval; } void op(const vector& src, Mat& dst, const Mat& mask) { int ndims = src[0].dims; vector minidx(ndims), maxidx(ndims); double minval=0, maxval=0; cv::minMaxIdx(src[0], &minval, &maxval, &minidx[0], &maxidx[0], mask); saveOutput(minidx, maxidx, minval, maxval, dst); } void refop(const vector& src, Mat& dst, const Mat& mask) { int ndims=src[0].dims; vector minidx(ndims), maxidx(ndims); double minval=0, maxval=0; cvtest::minMaxLoc(src[0], &minval, &maxval, &minidx, &maxidx, mask); saveOutput(minidx, maxidx, minval, maxval, dst); } double getMaxErr(int) { return 0; } }; struct reduceArgMinMaxOp : public BaseArithmOp { reduceArgMinMaxOp() : BaseArithmOp(1, FIX_ALPHA+FIX_BETA+FIX_GAMMA, 1, 1, Scalar::all(0)), isLast(false), isMax(false), axis(0) { context = ARITHM_MAX_NDIMS*2 + 2; } int getRandomType(RNG& rng) override { return cvtest::randomType(rng, baseArithmTypeMask, 1, 1); } void getRandomSize(RNG& rng, vector& size) override { cvtest::randomSize(rng, 2, ARITHM_MAX_NDIMS, 6, size); } void generateScalars(int depth, RNG& rng) override { BaseElemWiseOp::generateScalars(depth, rng); isLast = (randInt(rng) % 2 == 0); isMax = (randInt(rng) % 2 == 0); axis = randInt(rng); } int getAxis(const Mat& src) const { int dims = src.dims; return static_cast(axis % (2 * dims)) - dims; // [-dims; dims - 1] } void op(const vector& src, Mat& dst, const Mat&) override { const Mat& inp = src[0]; const int axis_ = getAxis(inp); if (isMax) { cv::reduceArgMax(inp, dst, axis_, isLast); } else { cv::reduceArgMin(inp, dst, axis_, isLast); } } void refop(const vector& src, Mat& dst, const Mat&) override { const Mat& inp = src[0]; const int axis_ = getAxis(inp); if (!isLast && !isMax) { cvtest::MinMaxReducer::reduce(inp, dst, axis_); } else if (!isLast && isMax) { cvtest::MinMaxReducer::reduce(inp, dst, axis_); } else if (isLast && !isMax) { cvtest::MinMaxReducer::reduce(inp, dst, axis_); } else { cvtest::MinMaxReducer::reduce(inp, dst, axis_); } } bool isLast; bool isMax; uint32_t axis; }; typedef Ptr ElemWiseOpPtr; class ElemWiseTest : public ::testing::TestWithParam {}; TEST_P(ElemWiseTest, accuracy) { ElemWiseOpPtr op = GetParam(); int testIdx = 0; RNG rng((uint64)ARITHM_RNG_SEED); for( testIdx = 0; testIdx < ARITHM_NTESTS; testIdx++ ) { vector size; op->getRandomSize(rng, size); int type = op->getRandomType(rng); int depth = CV_MAT_DEPTH(type); bool haveMask = ((op->flags & BaseElemWiseOp::SUPPORT_MASK) != 0 || (op->flags & BaseElemWiseOp::SUPPORT_MULTICHANNELMASK) != 0) && rng.uniform(0, 4) == 0; double minval=0, maxval=0; op->getValueRange(depth, minval, maxval); int i, ninputs = op->ninputs; vector src(ninputs); for( i = 0; i < ninputs; i++ ) src[i] = cvtest::randomMat(rng, size, type, minval, maxval, true); Mat dst0, dst, mask; if( haveMask ) { bool multiChannelMask = (op->flags & BaseElemWiseOp::SUPPORT_MULTICHANNELMASK) != 0 && rng.uniform(0, 2) == 0; int masktype = CV_8UC(multiChannelMask ? CV_MAT_CN(type) : 1); mask = cvtest::randomMat(rng, size, masktype, 0, 2, true); } if( (haveMask || ninputs == 0) && !(op->flags & BaseElemWiseOp::SCALAR_OUTPUT)) { dst0 = cvtest::randomMat(rng, size, type, minval, maxval, false); dst = cvtest::randomMat(rng, size, type, minval, maxval, true); cvtest::copy(dst, dst0); } op->generateScalars(depth, rng); op->refop(src, dst0, mask); op->op(src, dst, mask); double maxErr = op->getMaxErr(depth); ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " << cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n"; } } INSTANTIATE_TEST_CASE_P(Core_Copy, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CopyOp))); INSTANTIATE_TEST_CASE_P(Core_Set, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetOp))); INSTANTIATE_TEST_CASE_P(Core_SetZero, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetZeroOp))); INSTANTIATE_TEST_CASE_P(Core_ConvertScale, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleOp))); INSTANTIATE_TEST_CASE_P(Core_ConvertScaleFp16, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleFp16Op))); INSTANTIATE_TEST_CASE_P(Core_ConvertScaleAbs, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ConvertScaleAbsOp))); INSTANTIATE_TEST_CASE_P(Core_Add, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddOp))); INSTANTIATE_TEST_CASE_P(Core_Sub, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SubOp))); INSTANTIATE_TEST_CASE_P(Core_AddS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddSOp))); INSTANTIATE_TEST_CASE_P(Core_SubRS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SubRSOp))); INSTANTIATE_TEST_CASE_P(Core_ScaleAdd, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ScaleAddOp))); INSTANTIATE_TEST_CASE_P(Core_AddWeighted, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AddWeightedOp))); INSTANTIATE_TEST_CASE_P(Core_AbsDiff, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AbsDiffOp))); INSTANTIATE_TEST_CASE_P(Core_AbsDiffS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new AbsDiffSOp))); INSTANTIATE_TEST_CASE_P(Core_And, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('&')))); INSTANTIATE_TEST_CASE_P(Core_AndS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('&')))); INSTANTIATE_TEST_CASE_P(Core_Or, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('|')))); INSTANTIATE_TEST_CASE_P(Core_OrS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('|')))); INSTANTIATE_TEST_CASE_P(Core_Xor, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicOp('^')))); INSTANTIATE_TEST_CASE_P(Core_XorS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('^')))); INSTANTIATE_TEST_CASE_P(Core_Not, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogicSOp('~')))); INSTANTIATE_TEST_CASE_P(Core_Max, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MaxOp))); INSTANTIATE_TEST_CASE_P(Core_MaxS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MaxSOp))); INSTANTIATE_TEST_CASE_P(Core_Min, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinOp))); INSTANTIATE_TEST_CASE_P(Core_MinS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinSOp))); INSTANTIATE_TEST_CASE_P(Core_Mul, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MulOp))); INSTANTIATE_TEST_CASE_P(Core_Div, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new DivOp))); INSTANTIATE_TEST_CASE_P(Core_Recip, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new RecipOp))); INSTANTIATE_TEST_CASE_P(Core_Cmp, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CmpOp))); INSTANTIATE_TEST_CASE_P(Core_CmpS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CmpSOp))); INSTANTIATE_TEST_CASE_P(Core_InRangeS, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new InRangeSOp))); INSTANTIATE_TEST_CASE_P(Core_InRange, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new InRangeOp))); INSTANTIATE_TEST_CASE_P(Core_FiniteMask, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new FiniteMaskOp))); INSTANTIATE_TEST_CASE_P(Core_Flip, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new FlipOp))); INSTANTIATE_TEST_CASE_P(Core_Transpose, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new TransposeOp))); INSTANTIATE_TEST_CASE_P(Core_SetIdentity, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SetIdentityOp))); INSTANTIATE_TEST_CASE_P(Core_Exp, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new ExpOp))); INSTANTIATE_TEST_CASE_P(Core_Log, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new LogOp))); INSTANTIATE_TEST_CASE_P(Core_CountNonZero, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CountNonZeroOp))); INSTANTIATE_TEST_CASE_P(Core_Mean, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MeanOp))); INSTANTIATE_TEST_CASE_P(Core_MeanStdDev, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MeanStdDevOp))); INSTANTIATE_TEST_CASE_P(Core_Sum, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new SumOp))); INSTANTIATE_TEST_CASE_P(Core_Norm, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new NormOp))); INSTANTIATE_TEST_CASE_P(Core_MinMaxLoc, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new MinMaxLocOp))); INSTANTIATE_TEST_CASE_P(Core_reduceArgMinMax, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new reduceArgMinMaxOp))); INSTANTIATE_TEST_CASE_P(Core_CartToPolarToCart, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new CartToPolarToCartOp))); TEST(Core_ArithmMask, uninitialized) { RNG& rng = theRNG(); const int MAX_DIM=3; int sizes[MAX_DIM]; for( int iter = 0; iter < 100; iter++ ) { int dims = rng.uniform(1, MAX_DIM+1); int depth = rng.uniform(CV_8U, CV_64F+1); int cn = rng.uniform(1, 6); int type = CV_MAKETYPE(depth, cn); int op = rng.uniform(0, depth < CV_32F ? 5 : 2); // don't run binary operations between floating-point values int depth1 = op <= 1 ? CV_64F : depth; for (int k = 0; k < MAX_DIM; k++) { sizes[k] = k < dims ? rng.uniform(1, 30) : 0; } SCOPED_TRACE(cv::format("iter=%d dims=%d depth=%d cn=%d type=%d op=%d depth1=%d dims=[%d; %d; %d]", iter, dims, depth, cn, type, op, depth1, sizes[0], sizes[1], sizes[2])); Mat a(dims, sizes, type), a1; Mat b(dims, sizes, type), b1; Mat mask(dims, sizes, CV_8U); Mat mask1; Mat c, d; rng.fill(a, RNG::UNIFORM, 0, 100); rng.fill(b, RNG::UNIFORM, 0, 100); // [-2,2) range means that the each generated random number // will be one of -2, -1, 0, 1. Saturated to [0,255], it will become // 0, 0, 0, 1 => the mask will be filled by ~25%. rng.fill(mask, RNG::UNIFORM, -2, 2); a.convertTo(a1, depth1); b.convertTo(b1, depth1); // invert the mask cv::compare(mask, 0, mask1, CMP_EQ); a1.setTo(0, mask1); b1.setTo(0, mask1); if( op == 0 ) { cv::add(a, b, c, mask); cv::add(a1, b1, d); } else if( op == 1 ) { cv::subtract(a, b, c, mask); cv::subtract(a1, b1, d); } else if( op == 2 ) { cv::bitwise_and(a, b, c, mask); cv::bitwise_and(a1, b1, d); } else if( op == 3 ) { cv::bitwise_or(a, b, c, mask); cv::bitwise_or(a1, b1, d); } else if( op == 4 ) { cv::bitwise_xor(a, b, c, mask); cv::bitwise_xor(a1, b1, d); } Mat d1; d.convertTo(d1, depth); EXPECT_LE(cvtest::norm(c, d1, CV_C), DBL_EPSILON); } Mat_ tmpSrc(100,100); tmpSrc = 124; Mat_ tmpMask(100,100); tmpMask = 255; Mat_ tmpDst(100,100); tmpDst = 2; tmpSrc.copyTo(tmpDst,tmpMask); } TEST(Multiply, FloatingPointRounding) { cv::Mat src(1, 1, CV_8UC1, cv::Scalar::all(110)), dst; cv::Scalar s(147.286359696927, 1, 1 ,1); cv::multiply(src, s, dst, 1, CV_16U); // with CV_32F this produce result 16202 ASSERT_EQ(dst.at(0,0), 16201); } TEST(Core_Add, AddToColumnWhen3Rows) { cv::Mat m1 = (cv::Mat_(3, 2) << 1, 2, 3, 4, 5, 6); m1.col(1) += 10; cv::Mat m2 = (cv::Mat_(3, 2) << 1, 12, 3, 14, 5, 16); cv::MatExpr diff = m1 - m2; int nz = countNonZero(diff); ASSERT_EQ(0, nz); } TEST(Core_Add, AddToColumnWhen4Rows) { cv::Mat m1 = (cv::Mat_(4, 2) << 1, 2, 3, 4, 5, 6, 7, 8); m1.col(1) += 10; cv::Mat m2 = (cv::Mat_(4, 2) << 1, 12, 3, 14, 5, 16, 7, 18); ASSERT_EQ(0, countNonZero(m1 - m2)); } TEST(Core_round, CvRound) { ASSERT_EQ(2, cvRound(2.0)); ASSERT_EQ(2, cvRound(2.1)); ASSERT_EQ(-2, cvRound(-2.1)); ASSERT_EQ(3, cvRound(2.8)); ASSERT_EQ(-3, cvRound(-2.8)); ASSERT_EQ(2, cvRound(2.5)); ASSERT_EQ(4, cvRound(3.5)); ASSERT_EQ(-2, cvRound(-2.5)); ASSERT_EQ(-4, cvRound(-3.5)); } typedef testing::TestWithParam Mul1; TEST_P(Mul1, One) { Size size = GetParam(); cv::Mat src(size, CV_32FC1, cv::Scalar::all(2)), dst, ref_dst(size, CV_32FC1, cv::Scalar::all(6)); cv::multiply(3, src, dst); ASSERT_EQ(0, cvtest::norm(dst, ref_dst, cv::NORM_INF)); } INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1))); class SubtractOutputMatNotEmpty : public testing::TestWithParam< tuple > { public: cv::Size size; int src_type; int dst_depth; bool fixed; void SetUp() { size = get<0>(GetParam()); src_type = get<1>(GetParam()); dst_depth = get<2>(GetParam()); fixed = get<3>(GetParam()); } }; TEST_P(SubtractOutputMatNotEmpty, Mat_Mat) { cv::Mat src1(size, src_type, cv::Scalar::all(16)); cv::Mat src2(size, src_type, cv::Scalar::all(16)); cv::Mat dst; if (!fixed) { cv::subtract(src1, src2, dst, cv::noArray(), dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels())); cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src1.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_WithMask) { cv::Mat src1(size, src_type, cv::Scalar::all(16)); cv::Mat src2(size, src_type, cv::Scalar::all(16)); cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255)); cv::Mat dst; if (!fixed) { cv::subtract(src1, src2, dst, mask, dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels())); cv::subtract(src1, src2, fixed_dst, mask, dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src1.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_Expr) { cv::Mat src1(size, src_type, cv::Scalar::all(16)); cv::Mat src2(size, src_type, cv::Scalar::all(16)); cv::Mat dst = src1 - src2; ASSERT_FALSE(dst.empty()); ASSERT_EQ(src1.size(), dst.size()); ASSERT_EQ(src1.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar) { cv::Mat src(size, src_type, cv::Scalar::all(16)); cv::Mat dst; if (!fixed) { cv::subtract(src, cv::Scalar::all(16), dst, cv::noArray(), dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels())); cv::subtract(src, cv::Scalar::all(16), fixed_dst, cv::noArray(), dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Mat_Scalar_WithMask) { cv::Mat src(size, src_type, cv::Scalar::all(16)); cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255)); cv::Mat dst; if (!fixed) { cv::subtract(src, cv::Scalar::all(16), dst, mask, dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels())); cv::subtract(src, cv::Scalar::all(16), fixed_dst, mask, dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat) { cv::Mat src(size, src_type, cv::Scalar::all(16)); cv::Mat dst; if (!fixed) { cv::subtract(cv::Scalar::all(16), src, dst, cv::noArray(), dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels())); cv::subtract(cv::Scalar::all(16), src, fixed_dst, cv::noArray(), dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Scalar_Mat_WithMask) { cv::Mat src(size, src_type, cv::Scalar::all(16)); cv::Mat mask(size, CV_8UC1, cv::Scalar::all(255)); cv::Mat dst; if (!fixed) { cv::subtract(cv::Scalar::all(16), src, dst, mask, dst_depth); } else { const cv::Mat fixed_dst(size, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src.channels())); cv::subtract(cv::Scalar::all(16), src, fixed_dst, mask, dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(dst_depth > 0 ? dst_depth : src.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } TEST_P(SubtractOutputMatNotEmpty, Mat_Mat_3d) { int dims[] = {5, size.height, size.width}; cv::Mat src1(3, dims, src_type, cv::Scalar::all(16)); cv::Mat src2(3, dims, src_type, cv::Scalar::all(16)); cv::Mat dst; if (!fixed) { cv::subtract(src1, src2, dst, cv::noArray(), dst_depth); } else { const cv::Mat fixed_dst(3, dims, CV_MAKE_TYPE((dst_depth > 0 ? dst_depth : CV_16S), src1.channels())); cv::subtract(src1, src2, fixed_dst, cv::noArray(), dst_depth); dst = fixed_dst; dst_depth = fixed_dst.depth(); } ASSERT_FALSE(dst.empty()); ASSERT_EQ(src1.dims, dst.dims); ASSERT_EQ(src1.size, dst.size); ASSERT_EQ(dst_depth > 0 ? dst_depth : src1.depth(), dst.depth()); ASSERT_EQ(0, cv::countNonZero(dst.reshape(1))); } INSTANTIATE_TEST_CASE_P(Arithm, SubtractOutputMatNotEmpty, testing::Combine( testing::Values(cv::Size(16, 16), cv::Size(13, 13), cv::Size(16, 13), cv::Size(13, 16)), testing::Values(perf::MatType(CV_8UC1), CV_8UC3, CV_8UC4, CV_16SC1, CV_16SC3), testing::Values(-1, CV_16S, CV_32S, CV_32F), testing::Bool())); TEST(Core_FindNonZero, regression) { Mat img(10, 10, CV_8U, Scalar::all(0)); vector pts, pts2(5); findNonZero(img, pts); findNonZero(img, pts2); ASSERT_TRUE(pts.empty() && pts2.empty()); RNG rng((uint64)-1); size_t nz = 0; for( int i = 0; i < 10; i++ ) { int idx = rng.uniform(0, img.rows*img.cols); if( !img.data[idx] ) nz++; img.data[idx] = (uchar)rng.uniform(1, 256); } findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_8S ); pts.clear(); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_16U ); pts.resize(pts.size()*2); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_16S ); pts.resize(pts.size()*3); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_32S ); pts.resize(pts.size()*4); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_32F ); pts.resize(pts.size()*5); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); img.convertTo( img, CV_64F ); pts.clear(); findNonZero(img, pts); ASSERT_TRUE(pts.size() == nz); } TEST(Core_BoolVector, support) { std::vector test; int i, n = 205; int nz = 0; test.resize(n); for( i = 0; i < n; i++ ) { test[i] = theRNG().uniform(0, 2) != 0; nz += (int)test[i]; } ASSERT_EQ( nz, countNonZero(test) ); ASSERT_FLOAT_EQ((float)nz/n, (float)(cv::mean(test)[0])); } TEST(MinMaxLoc, Mat_UcharMax_Without_Loc) { Mat_ mat(50, 50); uchar iMaxVal = std::numeric_limits::max(); mat.setTo(iMaxVal); double min, max; Point minLoc, maxLoc; minMaxLoc(mat, &min, &max, &minLoc, &maxLoc, Mat()); ASSERT_EQ(iMaxVal, min); ASSERT_EQ(iMaxVal, max); ASSERT_EQ(Point(0, 0), minLoc); ASSERT_EQ(Point(0, 0), maxLoc); } TEST(MinMaxLoc, Mat_IntMax_Without_Mask) { Mat_ mat(50, 50); int iMaxVal = std::numeric_limits::max(); mat.setTo(iMaxVal); double min, max; Point minLoc, maxLoc; minMaxLoc(mat, &min, &max, &minLoc, &maxLoc, Mat()); ASSERT_EQ(iMaxVal, min); ASSERT_EQ(iMaxVal, max); ASSERT_EQ(Point(0, 0), minLoc); ASSERT_EQ(Point(0, 0), maxLoc); } TEST(Normalize, regression_5876_inplace_change_type) { double initial_values[] = {1, 2, 5, 4, 3}; float result_values[] = {0, 0.25, 1, 0.75, 0.5}; Mat m(Size(5, 1), CV_64FC1, initial_values); Mat result(Size(5, 1), CV_32FC1, result_values); normalize(m, m, 1, 0, NORM_MINMAX, CV_32F); EXPECT_EQ(0, cvtest::norm(m, result, NORM_INF)); } TEST(Normalize, regression_6125) { float initial_values[] = { 1888, 1692, 369, 263, 199, 280, 326, 129, 143, 126, 233, 221, 130, 126, 150, 249, 575, 574, 63, 12 }; Mat src(Size(20, 1), CV_32F, initial_values); float min = 0., max = 400.; normalize(src, src, 0, 400, NORM_MINMAX, CV_32F); for(int i = 0; i < 20; i++) { EXPECT_GE(src.at(i), min) << "Value should be >= 0"; EXPECT_LE(src.at(i), max) << "Value should be <= 400"; } } TEST(MinMaxLoc, regression_4955_nans) { cv::Mat one_mat(2, 2, CV_32F, cv::Scalar(1)); cv::minMaxLoc(one_mat, NULL, NULL, NULL, NULL); cv::Mat nan_mat(2, 2, CV_32F, cv::Scalar(std::numeric_limits::quiet_NaN())); cv::minMaxLoc(nan_mat, NULL, NULL, NULL, NULL); } TEST(Subtract, scalarc1_matc3) { int scalar = 255; cv::Mat srcImage(5, 5, CV_8UC3, cv::Scalar::all(5)), destImage; cv::subtract(scalar, srcImage, destImage); ASSERT_EQ(0, cv::norm(cv::Mat(5, 5, CV_8UC3, cv::Scalar::all(250)), destImage, cv::NORM_INF)); } TEST(Subtract, scalarc4_matc4) { cv::Scalar sc(255, 255, 255, 255); cv::Mat srcImage(5, 5, CV_8UC4, cv::Scalar::all(5)), destImage; cv::subtract(sc, srcImage, destImage); ASSERT_EQ(0, cv::norm(cv::Mat(5, 5, CV_8UC4, cv::Scalar::all(250)), destImage, cv::NORM_INF)); } TEST(Compare, empty) { cv::Mat temp, dst1, dst2; EXPECT_NO_THROW(cv::compare(temp, temp, dst1, cv::CMP_EQ)); EXPECT_TRUE(dst1.empty()); EXPECT_THROW(dst2 = temp > 5, cv::Exception); } TEST(Compare, regression_8999) { Mat_ A(4,1); A << 1, 3, 2, 4; Mat_ B(1,1); B << 2; Mat C; EXPECT_THROW(cv::compare(A, B, C, CMP_LT), cv::Exception); } TEST(Compare, regression_16F_do_not_crash) { cv::Mat mat1(2, 2, CV_16F, cv::Scalar(1)); cv::Mat mat2(2, 2, CV_16F, cv::Scalar(2)); cv::Mat dst; EXPECT_THROW(cv::compare(mat1, mat2, dst, cv::CMP_EQ), cv::Exception); } TEST(Core_minMaxIdx, regression_9207_1) { const int rows = 4; const int cols = 3; uchar mask_[rows*cols] = { 255, 255, 255, 255, 0, 255, 0, 255, 255, 0, 0, 255 }; uchar src_[rows*cols] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1 }; Mat mask(Size(cols, rows), CV_8UC1, mask_); Mat src(Size(cols, rows), CV_8UC1, src_); double minVal = -0.0, maxVal = -0.0; int minIdx[2] = { -2, -2 }, maxIdx[2] = { -2, -2 }; cv::minMaxIdx(src, &minVal, &maxVal, minIdx, maxIdx, mask); EXPECT_EQ(0, minIdx[0]); EXPECT_EQ(0, minIdx[1]); EXPECT_EQ(0, maxIdx[0]); EXPECT_EQ(0, maxIdx[1]); } class TransposeND : public testing::TestWithParam< tuple, perf::MatType> > { public: std::vector m_shape; int m_type; void SetUp() { std::tie(m_shape, m_type) = GetParam(); } }; TEST_P(TransposeND, basic) { Mat inp(m_shape, m_type); randu(inp, 0, 255); std::vector order(m_shape.size()); std::iota(order.begin(), order.end(), 0); auto transposer = [&order] (const std::vector& id) { std::vector ret(id.size()); for (size_t i = 0; i < id.size(); ++i) { ret[i] = id[order[i]]; } return ret; }; auto advancer = [&inp] (std::vector& id) { for (int j = static_cast(id.size() - 1); j >= 0; --j) { ++id[j]; if (id[j] != inp.size[j]) { break; } id[j] = 0; } }; do { Mat out; cv::transposeND(inp, order, out); std::vector id(order.size()); for (size_t i = 0; i < inp.total(); ++i) { auto new_id = transposer(id); switch (inp.type()) { case CV_8UC1: ASSERT_EQ(inp.at(id.data()), out.at(new_id.data())); break; case CV_32FC1: ASSERT_EQ(inp.at(id.data()), out.at(new_id.data())); break; default: FAIL() << "Unsupported type: " << inp.type(); } advancer(id); } } while (std::next_permutation(order.begin(), order.end())); } INSTANTIATE_TEST_CASE_P(Arithm, TransposeND, testing::Combine( testing::Values(std::vector{2, 3, 4}, std::vector{5, 10}), testing::Values(perf::MatType(CV_8UC1), CV_32FC1) )); class FlipND : public testing::TestWithParam< tuple, perf::MatType> > { public: std::vector m_shape; int m_type; void SetUp() { std::tie(m_shape, m_type) = GetParam(); } }; TEST_P(FlipND, basic) { Mat inp(m_shape, m_type); randu(inp, 0, 255); int ndim = static_cast(m_shape.size()); std::vector axes(ndim*2); // [-shape, shape) std::iota(axes.begin(), axes.end(), -ndim); auto get_flipped_indices = [&inp, ndim] (size_t total, std::vector& indices, int axis) { const int* shape = inp.size.p; size_t t = total, idx; for (int i = ndim - 1; i >= 0; --i) { idx = t / shape[i]; indices[i] = int(t - idx * shape[i]); t = idx; } int _axis = (axis + ndim) % ndim; std::vector flipped_indices = indices; flipped_indices[_axis] = shape[_axis] - 1 - indices[_axis]; return flipped_indices; }; for (size_t i = 0; i < axes.size(); ++i) { int axis = axes[i]; Mat out; cv::flipND(inp, out, axis); // check values std::vector indices(ndim, 0); for (size_t j = 0; j < inp.total(); ++j) { auto flipped_indices = get_flipped_indices(j, indices, axis); switch (inp.type()) { case CV_8UC1: ASSERT_EQ(inp.at(indices.data()), out.at(flipped_indices.data())); break; case CV_32FC1: ASSERT_EQ(inp.at(indices.data()), out.at(flipped_indices.data())); break; default: FAIL() << "Unsupported type: " << inp.type(); } } } } INSTANTIATE_TEST_CASE_P(Arithm, FlipND, testing::Combine( testing::Values(std::vector{5, 10}, std::vector{2, 3, 4}), testing::Values(perf::MatType(CV_8UC1), CV_32FC1) )); TEST(BroadcastTo, basic) { std::vector shape_src{2, 1}; std::vector data_src{1, 2}; Mat src(static_cast(shape_src.size()), shape_src.data(), CV_32SC1, data_src.data()); auto get_index = [](const std::vector& shape, size_t cnt) { std::vector index(shape.size()); size_t t = cnt; for (int i = static_cast(shape.size() - 1); i >= 0; --i) { size_t idx = t / shape[i]; index[i] = static_cast(t - idx * shape[i]); t = idx; } return index; }; auto fn_verify = [&get_index](const Mat& ref, const Mat& res) { // check type EXPECT_EQ(ref.type(), res.type()); // check shape EXPECT_EQ(ref.dims, res.dims); for (int i = 0; i < ref.dims; ++i) { EXPECT_EQ(ref.size[i], res.size[i]); } // check value std::vector shape{ref.size.p, ref.size.p + ref.dims}; for (size_t i = 0; i < ref.total(); ++i) { auto index = get_index(shape, i); switch (ref.type()) { case CV_32SC1: { ASSERT_EQ(ref.at(index.data()), res.at(index.data())); } break; case CV_8UC1: { ASSERT_EQ(ref.at(index.data()), res.at(index.data())); } break; case CV_32FC1: { ASSERT_EQ(ref.at(index.data()), res.at(index.data())); } break; default: FAIL() << "Unsupported type: " << ref.type(); } } }; { std::vector shape{4, 2, 3}; std::vector data_ref{ 1, 1, 1, // [0, 0, :] 2, 2, 2, // [0, 1, :] 1, 1, 1, // [1, 0, :] 2, 2, 2, // [1, 1, :] 1, 1, 1, // [2, 0, :] 2, 2, 2, // [2, 1, :] 1, 1, 1, // [3, 0, :] 2, 2, 2 // [3, 1, :] }; Mat ref(static_cast(shape.size()), shape.data(), src.type(), data_ref.data()); Mat dst; broadcast(src, shape, dst); fn_verify(ref, dst); } { Mat _src; src.convertTo(_src, CV_8U); std::vector shape{4, 2, 3}; std::vector data_ref{ 1, 1, 1, // [0, 0, :] 2, 2, 2, // [0, 1, :] 1, 1, 1, // [1, 0, :] 2, 2, 2, // [1, 1, :] 1, 1, 1, // [2, 0, :] 2, 2, 2, // [2, 1, :] 1, 1, 1, // [3, 0, :] 2, 2, 2 // [3, 1, :] }; Mat ref(static_cast(shape.size()), shape.data(), _src.type(), data_ref.data()); Mat dst; broadcast(_src, shape, dst); fn_verify(ref, dst); } { Mat _src; src.convertTo(_src, CV_32F); std::vector shape{1, 1, 2, 1}; // {2, 1} std::vector data_ref{ 1.f, // [0, 0, 0, 0] 2.f, // [0, 0, 1, 0] }; Mat ref(static_cast(shape.size()), shape.data(), _src.type(), data_ref.data()); Mat dst; broadcast(_src, shape, dst); fn_verify(ref, dst); } { std::vector _shape_src{2, 3, 4}; std::vector _data_src{ 1.f, 2.f, 3.f, 4.f, // [0, 0, :] 2.f, 3.f, 4.f, 5.f, // [0, 1, :] 3.f, 4.f, 5.f, 6.f, // [0, 2, :] 4.f, 5.f, 6.f, 7.f, // [1, 0, :] 5.f, 6.f, 7.f, 8.f, // [1, 1, :] 6.f, 7.f, 8.f, 9.f, // [1, 2, :] }; Mat _src(static_cast(_shape_src.size()), _shape_src.data(), CV_32FC1, _data_src.data()); std::vector shape{2, 1, 2, 3, 4}; std::vector data_ref{ 1.f, 2.f, 3.f, 4.f, // [0, 0, 0, 0, :] 2.f, 3.f, 4.f, 5.f, // [0, 0, 0, 1, :] 3.f, 4.f, 5.f, 6.f, // [0, 0, 0, 2, :] 4.f, 5.f, 6.f, 7.f, // [0, 0, 1, 0, :] 5.f, 6.f, 7.f, 8.f, // [0, 0, 1, 1, :] 6.f, 7.f, 8.f, 9.f, // [0, 0, 1, 2, :] 1.f, 2.f, 3.f, 4.f, // [1, 0, 0, 0, :] 2.f, 3.f, 4.f, 5.f, // [1, 0, 0, 1, :] 3.f, 4.f, 5.f, 6.f, // [1, 0, 0, 2, :] 4.f, 5.f, 6.f, 7.f, // [1, 0, 1, 0, :] 5.f, 6.f, 7.f, 8.f, // [1, 0, 1, 1, :] 6.f, 7.f, 8.f, 9.f, // [1, 0, 1, 2, :] }; Mat ref(static_cast(shape.size()), shape.data(), _src.type(), data_ref.data()); Mat dst; broadcast(_src, shape, dst); fn_verify(ref, dst); } } TEST(Core_minMaxIdx, regression_9207_2) { const int rows = 13; const int cols = 15; uchar mask_[rows*cols] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 255, 255, 255, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0, 0, 0, 0, 0, 0, 255, 255, 0, 0, 0, 255, 255, 0, 255, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 255, 0, 255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uchar src_[15*13] = { 5, 5, 5, 5, 5, 6, 5, 2, 0, 4, 6, 6, 4, 1, 0, 6, 5, 4, 4, 5, 6, 6, 5, 2, 0, 4, 6, 5, 2, 0, 3, 2, 1, 1, 2, 4, 6, 6, 4, 2, 3, 4, 4, 2, 0, 1, 0, 0, 0, 0, 1, 4, 5, 4, 4, 4, 4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 4, 5, 6, 5, 4, 3, 2, 0, 1, 0, 0, 0, 0, 0, 3, 5, 5, 4, 3, 4, 4, 3, 0, 2, 0, 0, 0, 0, 2, 5, 6, 5, 2, 2, 5, 4, 3, 0 }; Mat mask(Size(cols, rows), CV_8UC1, mask_); Mat src(Size(cols, rows), CV_8UC1, src_); double minVal = -0.0, maxVal = -0.0; int minIdx[2] = { -2, -2 }, maxIdx[2] = { -2, -2 }; cv::minMaxIdx(src, &minVal, &maxVal, minIdx, maxIdx, mask); EXPECT_EQ(0, minIdx[0]); EXPECT_EQ(14, minIdx[1]); EXPECT_EQ(0, maxIdx[0]); EXPECT_EQ(14, maxIdx[1]); } TEST(Core_Set, regression_11044) { Mat testFloat(Size(3, 3), CV_32FC1); Mat testDouble(Size(3, 3), CV_64FC1); testFloat.setTo(1); EXPECT_EQ(1, testFloat.at(0,0)); testFloat.setTo(std::numeric_limits::infinity()); EXPECT_EQ(std::numeric_limits::infinity(), testFloat.at(0, 0)); testFloat.setTo(1); EXPECT_EQ(1, testFloat.at(0, 0)); testFloat.setTo(std::numeric_limits::infinity()); EXPECT_EQ(std::numeric_limits::infinity(), testFloat.at(0, 0)); testDouble.setTo(1); EXPECT_EQ(1, testDouble.at(0, 0)); testDouble.setTo(std::numeric_limits::infinity()); EXPECT_EQ(std::numeric_limits::infinity(), testDouble.at(0, 0)); testDouble.setTo(1); EXPECT_EQ(1, testDouble.at(0, 0)); testDouble.setTo(std::numeric_limits::infinity()); EXPECT_EQ(std::numeric_limits::infinity(), testDouble.at(0, 0)); Mat testMask(Size(3, 3), CV_8UC1, Scalar(1)); testFloat.setTo(1); EXPECT_EQ(1, testFloat.at(0, 0)); testFloat.setTo(std::numeric_limits::infinity(), testMask); EXPECT_EQ(std::numeric_limits::infinity(), testFloat.at(0, 0)); testFloat.setTo(1); EXPECT_EQ(1, testFloat.at(0, 0)); testFloat.setTo(std::numeric_limits::infinity(), testMask); EXPECT_EQ(std::numeric_limits::infinity(), testFloat.at(0, 0)); testDouble.setTo(1); EXPECT_EQ(1, testDouble.at(0, 0)); testDouble.setTo(std::numeric_limits::infinity(), testMask); EXPECT_EQ(std::numeric_limits::infinity(), testDouble.at(0, 0)); testDouble.setTo(1); EXPECT_EQ(1, testDouble.at(0, 0)); testDouble.setTo(std::numeric_limits::infinity(), testMask); EXPECT_EQ(std::numeric_limits::infinity(), testDouble.at(0, 0)); } TEST(Core_Norm, IPP_regression_NORM_L1_16UC3_small) { int cn = 3; Size sz(9, 4); // width < 16 Mat a(sz, CV_MAKE_TYPE(CV_16U, cn), Scalar::all(1)); Mat b(sz, CV_MAKE_TYPE(CV_16U, cn), Scalar::all(2)); uchar mask_[9*4] = { 255, 255, 255, 0, 255, 255, 0, 255, 0, 0, 255, 0, 0, 255, 255, 255, 255, 0, 0, 0, 0, 255, 0, 255, 0, 255, 255, 0, 0, 255, 0, 255, 255, 255, 0, 255 }; Mat mask(sz, CV_8UC1, mask_); EXPECT_EQ((double)9*4*cn, cv::norm(a, b, NORM_L1)); // without mask, IPP works well EXPECT_EQ((double)20*cn, cv::norm(a, b, NORM_L1, mask)); } TEST(Core_Norm, NORM_L2_8UC4) { // Tests there is no integer overflow in norm computation for multiple channels. const int kSide = 100; cv::Mat4b a(kSide, kSide, cv::Scalar(255, 255, 255, 255)); cv::Mat4b b = cv::Mat4b::zeros(kSide, kSide); const double kNorm = 2.*kSide*255.; EXPECT_EQ(kNorm, cv::norm(a, b, NORM_L2)); } TEST(Core_ConvertTo, regression_12121) { { Mat src(4, 64, CV_32SC1, Scalar(-1)); Mat dst; src.convertTo(dst, CV_8U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN)); Mat dst; src.convertTo(dst, CV_8U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32767)); Mat dst; src.convertTo(dst, CV_8U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32768)); Mat dst; src.convertTo(dst, CV_8U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(32768)); Mat dst; src.convertTo(dst, CV_8U); EXPECT_EQ(255, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN)); Mat dst; src.convertTo(dst, CV_16U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32767)); Mat dst; src.convertTo(dst, CV_16U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(INT_MIN + 32768)); Mat dst; src.convertTo(dst, CV_16U); EXPECT_EQ(0, dst.at(0, 0)) << "src=" << src.at(0, 0); } { Mat src(4, 64, CV_32SC1, Scalar(65536)); Mat dst; src.convertTo(dst, CV_16U); EXPECT_EQ(65535, dst.at(0, 0)) << "src=" << src.at(0, 0); } } TEST(Core_MeanStdDev, regression_multichannel) { { uchar buf[] = { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 }; double ref_buf[] = { 2., 3., 4., 5., 6., 7., 8., 9., 1., 1., 1., 1., 1., 1., 1., 1. }; Mat src(1, 2, CV_MAKETYPE(CV_8U, 8), buf); Mat ref_m(8, 1, CV_64FC1, ref_buf); Mat ref_sd(8, 1, CV_64FC1, ref_buf + 8); Mat dst_m, dst_sd; meanStdDev(src, dst_m, dst_sd); EXPECT_EQ(0, cv::norm(dst_m, ref_m, NORM_L1)); EXPECT_EQ(0, cv::norm(dst_sd, ref_sd, NORM_L1)); } } template static inline void testDivideInitData(Mat& src1, Mat& src2) { CV_StaticAssert(std::numeric_limits::is_integer, ""); const static T src1_[] = { 0, 0, 0, 0, 8, 8, 8, 8, -8, -8, -8, -8 }; Mat(3, 4, traits::Type::value, (void*)src1_).copyTo(src1); const static T src2_[] = { 1, 2, 0, std::numeric_limits::max(), 1, 2, 0, std::numeric_limits::max(), 1, 2, 0, std::numeric_limits::max(), }; Mat(3, 4, traits::Type::value, (void*)src2_).copyTo(src2); } template static inline void testDivideInitDataFloat(Mat& src1, Mat& src2) { CV_StaticAssert(!std::numeric_limits::is_integer, ""); const static T src1_[] = { 0, 0, 0, 0, 8, 8, 8, 8, -8, -8, -8, -8 }; Mat(3, 4, traits::Type::value, (void*)src1_).copyTo(src1); const static T src2_[] = { 1, 2, 0, std::numeric_limits::infinity(), 1, 2, 0, std::numeric_limits::infinity(), 1, 2, 0, std::numeric_limits::infinity(), }; Mat(3, 4, traits::Type::value, (void*)src2_).copyTo(src2); } template <> inline void testDivideInitData(Mat& src1, Mat& src2) { testDivideInitDataFloat(src1, src2); } template <> inline void testDivideInitData(Mat& src1, Mat& src2) { testDivideInitDataFloat(src1, src2); } template static inline void testDivideChecks(const Mat& dst) { ASSERT_FALSE(dst.empty()); CV_StaticAssert(std::numeric_limits::is_integer, ""); for (int y = 0; y < dst.rows; y++) { for (int x = 0; x < dst.cols; x++) { if ((x % 4) == 2) { EXPECT_EQ(0, dst.at(y, x)) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); } else { EXPECT_TRUE(0 == cvIsNaN((double)dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); EXPECT_TRUE(0 == cvIsInf((double)dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); } } } } template static inline void testDivideChecksFP(const Mat& dst) { ASSERT_FALSE(dst.empty()); CV_StaticAssert(!std::numeric_limits::is_integer, ""); for (int y = 0; y < dst.rows; y++) { for (int x = 0; x < dst.cols; x++) { if ((y % 3) == 0 && (x % 4) == 2) { EXPECT_TRUE(cvIsNaN(dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); } else if ((x % 4) == 2) { EXPECT_TRUE(cvIsInf(dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); } else { EXPECT_FALSE(cvIsNaN(dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); EXPECT_FALSE(cvIsInf(dst.at(y, x))) << "dst(" << y << ", " << x << ") = " << dst.at(y, x); } } } } template <> inline void testDivideChecks(const Mat& dst) { testDivideChecksFP(dst); } template <> inline void testDivideChecks(const Mat& dst) { testDivideChecksFP(dst); } template static inline void testDivide(bool isUMat, double scale, bool largeSize, bool tailProcessing, bool roi) { Mat src1, src2; testDivideInitData(src1, src2); ASSERT_FALSE(src1.empty()); ASSERT_FALSE(src2.empty()); if (largeSize) { repeat(src1.clone(), 1, 8, src1); repeat(src2.clone(), 1, 8, src2); } if (tailProcessing) { src1 = src1(Rect(0, 0, src1.cols - 1, src1.rows)); src2 = src2(Rect(0, 0, src2.cols - 1, src2.rows)); } if (!roi && tailProcessing) { src1 = src1.clone(); src2 = src2.clone(); } Mat dst; if (!isUMat) { cv::divide(src1, src2, dst, scale); } else { UMat usrc1, usrc2, udst; src1.copyTo(usrc1); src2.copyTo(usrc2); cv::divide(usrc1, usrc2, udst, scale); udst.copyTo(dst); } testDivideChecks(dst); if (::testing::Test::HasFailure()) { std::cout << "src1 = " << std::endl << src1 << std::endl; std::cout << "src2 = " << std::endl << src2 << std::endl; std::cout << "dst = " << std::endl << dst << std::endl; } } typedef tuple DivideRulesParam; typedef testing::TestWithParam Core_DivideRules; TEST_P(Core_DivideRules, type_32s) { DivideRulesParam param = GetParam(); testDivide(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param)); } TEST_P(Core_DivideRules, type_16s) { DivideRulesParam param = GetParam(); testDivide(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param)); } TEST_P(Core_DivideRules, type_32f) { DivideRulesParam param = GetParam(); testDivide(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param)); } TEST_P(Core_DivideRules, type_64f) { DivideRulesParam param = GetParam(); testDivide(get<0>(param), get<1>(param), get<2>(param), get<3>(param), get<4>(param)); } INSTANTIATE_TEST_CASE_P(/* */, Core_DivideRules, testing::Combine( /* isMat */ testing::Values(false), /* scale */ testing::Values(1.0, 5.0), /* largeSize */ testing::Bool(), /* tail */ testing::Bool(), /* roi */ testing::Bool() )); INSTANTIATE_TEST_CASE_P(UMat, Core_DivideRules, testing::Combine( /* isMat */ testing::Values(true), /* scale */ testing::Values(1.0, 5.0), /* largeSize */ testing::Bool(), /* tail */ testing::Bool(), /* roi */ testing::Bool() )); TEST(Core_MinMaxIdx, rows_overflow) { const int N = 65536 + 1; const int M = 1; { setRNGSeed(123); Mat m(N, M, CV_32FC1); randu(m, -100, 100); double minVal = 0, maxVal = 0; int minIdx[CV_MAX_DIM] = { 0 }, maxIdx[CV_MAX_DIM] = { 0 }; cv::minMaxIdx(m, &minVal, &maxVal, minIdx, maxIdx); double minVal0 = 0, maxVal0 = 0; int minIdx0[CV_MAX_DIM] = { 0 }, maxIdx0[CV_MAX_DIM] = { 0 }; cv::ipp::setUseIPP(false); cv::minMaxIdx(m, &minVal0, &maxVal0, minIdx0, maxIdx0); cv::ipp::setUseIPP(true); EXPECT_FALSE(fabs(minVal0 - minVal) > 1e-6 || fabs(maxVal0 - maxVal) > 1e-6) << "NxM=" << N << "x" << M << " min=" << minVal0 << " vs " << minVal << " max=" << maxVal0 << " vs " << maxVal; } } TEST(Core_Magnitude, regression_19506) { for (int N = 1; N <= 64; ++N) { Mat a(1, N, CV_32FC1, Scalar::all(1e-20)); Mat res; magnitude(a, a, res); EXPECT_LE(cvtest::norm(res, NORM_L1), 1e-15) << N; } } TEST(Core_CartPolar, inplace) { RNG& rng = TS::ptr()->get_rng(); cv::Mat1d A[2] = {cv::Mat1d(10, 10), cv::Mat1d(10, 10)}; cv::Mat1d B[2], C[2]; cv::UMat uA[2]; for(int i = 0; i < 2; ++i) { cvtest::randUni(rng, A[i], Scalar::all(-1000), Scalar::all(1000)); A[i].copyTo(uA[i]); } // Reverse cv::cartToPolar(A[0], A[1], B[0], B[1], false); cv::polarToCart(B[0], B[1], C[0], C[1], false); EXPECT_MAT_NEAR(A[0], C[0], 2); EXPECT_MAT_NEAR(A[1], C[1], 2); // Inplace EXPECT_THROW(cv::polarToCart(B[0], B[1], B[0], B[1], false), cv::Exception); EXPECT_THROW(cv::polarToCart(B[0], B[1], B[1], B[0], false), cv::Exception); EXPECT_THROW(cv::cartToPolar(A[0], A[1], A[0], A[1], false), cv::Exception); EXPECT_THROW(cv::cartToPolar(A[0], A[1], A[1], A[0], false), cv::Exception); // Inplace OCL EXPECT_THROW(cv::polarToCart(uA[0], uA[1], uA[0], uA[1]), cv::Exception); EXPECT_THROW(cv::polarToCart(uA[0], uA[1], uA[1], uA[0]), cv::Exception); EXPECT_THROW(cv::cartToPolar(uA[0], uA[1], uA[0], uA[1]), cv::Exception); EXPECT_THROW(cv::cartToPolar(uA[0], uA[1], uA[0], uA[1]), cv::Exception); } // Check different values for finiteMask() template _Tp randomNan(RNG& rng); template<> float randomNan(RNG& rng) { uint32_t r = rng.next(); Cv32suf v; v.u = r; // exp & set a bit to avoid zero mantissa v.u = v.u | 0x7f800001; return v.f; } template<> double randomNan(RNG& rng) { uint32_t r0 = rng.next(); uint32_t r1 = rng.next(); Cv64suf v; v.u = (uint64_t(r0) << 32) | uint64_t(r1); // exp &set a bit to avoid zero mantissa v.u = v.u | 0x7ff0000000000001; return v.f; } template Mat generateFiniteMaskData(int cn, RNG& rng) { typedef typename reference::SoftType::type SFT; SFT pinf = SFT::inf(); SFT ninf = SFT::inf().setSign(true); const int len = 100; Mat_ plainData(1, cn*len); for(int i = 0; i < cn*len; i++) { int r = rng.uniform(0, 3); plainData(i) = r == 0 ? T(rng.uniform(0, 2) ? pinf : ninf) : r == 1 ? randomNan(rng) : T(0); } return Mat(plainData).reshape(cn); } typedef std::tuple FiniteMaskFixtureParams; class FiniteMaskFixture : public ::testing::TestWithParam {}; TEST_P(FiniteMaskFixture, flags) { auto p = GetParam(); int depth = get<0>(p); int channels = get<1>(p); RNG rng((uint64)ARITHM_RNG_SEED); Mat data = (depth == CV_32F) ? generateFiniteMaskData(channels, rng) /* CV_64F */ : generateFiniteMaskData(channels, rng); Mat nans, gtNans; cv::finiteMask(data, nans); reference::finiteMask(data, gtNans); EXPECT_MAT_NEAR(nans, gtNans, 0); } // Params are: depth, channels 1 to 4 INSTANTIATE_TEST_CASE_P(Core_FiniteMask, FiniteMaskFixture, ::testing::Combine(::testing::Values(CV_32F, CV_64F), ::testing::Range(1, 5))); /////////////////////////////////////////////////////////////////////////////////// typedef testing::TestWithParam NonZeroNotSupportedMatDepth; TEST_P(NonZeroNotSupportedMatDepth, findNonZero) { cv::Mat src = cv::Mat(16,16, CV_MAKETYPE(GetParam(), 1)); vector pts; EXPECT_THROW( findNonZero(src, pts), cv::Exception); } TEST_P(NonZeroNotSupportedMatDepth, countNonZero) { cv::Mat src = cv::Mat(16,16, CV_MAKETYPE(GetParam(), 1)); EXPECT_THROW( countNonZero(src), cv::Exception); } TEST_P(NonZeroNotSupportedMatDepth, hasNonZero) { cv::Mat src = cv::Mat(16,16, CV_MAKETYPE(GetParam(), 1)); EXPECT_THROW( hasNonZero(src), cv::Exception); } INSTANTIATE_TEST_CASE_P( NonZero, NonZeroNotSupportedMatDepth, testing::Values(perf::MatDepth(CV_16F), CV_16BF, CV_Bool, CV_64U, CV_64S, CV_32U) ); /////////////////////////////////////////////////////////////////////////////////// typedef testing::TestWithParam LutNotSupportedMatDepth; TEST_P(LutNotSupportedMatDepth, lut) { cv::Mat src = cv::Mat::zeros(16,16, CV_8UC1); cv::Mat lut = cv::Mat(1, 256, CV_MAKETYPE(GetParam(), 1)); cv::Mat dst; EXPECT_THROW( cv::LUT(src,lut,dst), cv::Exception); } INSTANTIATE_TEST_CASE_P( Lut, LutNotSupportedMatDepth, testing::Values(perf::MatDepth(CV_16F), CV_16BF, CV_Bool, CV_64U, CV_64S, CV_32U) ); /////////////////////////////////////////////////////////////////////////////////// typedef testing::TestWithParam MinMaxNotSupportedMatDepth; TEST_P(MinMaxNotSupportedMatDepth, minMaxLoc) { cv::Mat src = cv::Mat(16,16, CV_MAKETYPE(GetParam(), 1)); double minV=0.0, maxV=0.0; Point minLoc, maxLoc; EXPECT_THROW( cv::minMaxLoc(src, &minV, &maxV, &minLoc, &maxLoc), cv::Exception); } TEST_P(MinMaxNotSupportedMatDepth, minMaxIdx) { cv::Mat src = cv::Mat(16,16, CV_MAKETYPE(GetParam(), 1)); double minV=0.0, maxV=0.0; int minIdx=0, maxIdx=0; EXPECT_THROW( cv::minMaxIdx(src, &minV, &maxV, &minIdx, &maxIdx), cv::Exception); } INSTANTIATE_TEST_CASE_P( MinMaxLoc, MinMaxNotSupportedMatDepth, testing::Values(perf::MatDepth(CV_16F), CV_16BF, CV_Bool, CV_64U, CV_64S, CV_32U) ); }} // namespace