#!/usr/bin/env python ''' camera calibration for distorted images with chess board samples reads distorted images, calculates the calibration and write undistorted images usage: calibrate.py [--debug ] [-w ] [-h ] [-t ] [--square_size=] [--marker_size=] [--aruco_dict=] [] usage example: calibrate.py -w 4 -h 6 -t chessboard --square_size=50 ../data/left*.jpg default values: --debug: ./output/ -w: 4 -h: 6 -t: chessboard --square_size: 50 --marker_size: 25 --aruco_dict: DICT_4X4_50 --threads: 4 defaults to ../data/left*.jpg ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv # local modules from common import splitfn # built-in modules import os def main(): import sys import getopt from glob import glob args, img_names = getopt.getopt(sys.argv[1:], 'w:h:t:', ['debug=','square_size=', 'marker_size=', 'aruco_dict=', 'threads=', ]) args = dict(args) args.setdefault('--debug', './output/') args.setdefault('-w', 4) args.setdefault('-h', 6) args.setdefault('-t', 'chessboard') args.setdefault('--square_size', 10) args.setdefault('--marker_size', 5) args.setdefault('--aruco_dict', 'DICT_4X4_50') args.setdefault('--threads', 4) if not img_names: img_mask = '../data/left??.jpg' # default img_names = glob(img_mask) debug_dir = args.get('--debug') if debug_dir and not os.path.isdir(debug_dir): os.mkdir(debug_dir) height = int(args.get('-h')) width = int(args.get('-w')) pattern_type = str(args.get('-t')) square_size = float(args.get('--square_size')) marker_size = float(args.get('--marker_size')) aruco_dict_name = str(args.get('--aruco_dict')) pattern_size = (height, width) if pattern_type == 'chessboard': pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32) pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) pattern_points *= square_size elif pattern_type == 'charucoboard': pattern_points = np.zeros((np.prod((height-1, width-1)), 3), np.float32) pattern_points[:, :2] = np.indices((height-1, width-1)).T.reshape(-1, 2) pattern_points *= square_size else: print("unknown pattern") return None obj_points = [] img_points = [] h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results aruco_dicts = { 'DICT_4X4_50':cv.aruco.DICT_4X4_50, 'DICT_4X4_100':cv.aruco.DICT_4X4_100, 'DICT_4X4_250':cv.aruco.DICT_4X4_250, 'DICT_4X4_1000':cv.aruco.DICT_4X4_1000, 'DICT_5X5_50':cv.aruco.DICT_5X5_50, 'DICT_5X5_100':cv.aruco.DICT_5X5_100, 'DICT_5X5_250':cv.aruco.DICT_5X5_250, 'DICT_5X5_1000':cv.aruco.DICT_5X5_1000, 'DICT_6X6_50':cv.aruco.DICT_6X6_50, 'DICT_6X6_100':cv.aruco.DICT_6X6_100, 'DICT_6X6_250':cv.aruco.DICT_6X6_250, 'DICT_6X6_1000':cv.aruco.DICT_6X6_1000, 'DICT_7X7_50':cv.aruco.DICT_7X7_50, 'DICT_7X7_100':cv.aruco.DICT_7X7_100, 'DICT_7X7_250':cv.aruco.DICT_7X7_250, 'DICT_7X7_1000':cv.aruco.DICT_7X7_1000, 'DICT_ARUCO_ORIGINAL':cv.aruco.DICT_ARUCO_ORIGINAL, 'DICT_APRILTAG_16h5':cv.aruco.DICT_APRILTAG_16h5, 'DICT_APRILTAG_25h9':cv.aruco.DICT_APRILTAG_25h9, 'DICT_APRILTAG_36h10':cv.aruco.DICT_APRILTAG_36h10, 'DICT_APRILTAG_36h11':cv.aruco.DICT_APRILTAG_36h11 } if (aruco_dict_name not in set(aruco_dicts.keys())): print("unknown aruco dictionary name") return None aruco_dict = cv.aruco.getPredefinedDictionary(aruco_dicts[aruco_dict_name]) board = cv.aruco.CharucoBoard(pattern_size, square_size, marker_size, aruco_dict) charuco_detector = cv.aruco.CharucoDetector(board) def processImage(fn): print('processing %s... ' % fn) img = cv.imread(fn, cv.IMREAD_GRAYSCALE) if img is None: print("Failed to load", fn) return None assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0])) found = False corners = 0 if pattern_type == 'chessboard': found, corners = cv.findChessboardCorners(img, pattern_size) if found: term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1) cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term) elif pattern_type == 'charucoboard': corners, _charucoIds, _markerCorners_svg, _markerIds_svg = charuco_detector.detectBoard(img) if (len(corners) == (height-1)*(width-1)): found = True else: print("unknown pattern type", pattern_type) return None if debug_dir: vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR) cv.drawChessboardCorners(vis, pattern_size, corners, found) _path, name, _ext = splitfn(fn) outfile = os.path.join(debug_dir, name + '_chess.png') cv.imwrite(outfile, vis) if not found: print('pattern not found') return None print(' %s... OK' % fn) return (corners.reshape(-1, 2), pattern_points) threads_num = int(args.get('--threads')) if threads_num <= 1: chessboards = [processImage(fn) for fn in img_names] else: print("Run with %d threads..." % threads_num) from multiprocessing.dummy import Pool as ThreadPool pool = ThreadPool(threads_num) chessboards = pool.map(processImage, img_names) chessboards = [x for x in chessboards if x is not None] for (corners, pattern_points) in chessboards: img_points.append(corners) obj_points.append(pattern_points) # calculate camera distortion rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None) print("\nRMS:", rms) print("camera matrix:\n", camera_matrix) print("distortion coefficients: ", dist_coefs.ravel()) # undistort the image with the calibration print('') for fn in img_names if debug_dir else []: _path, name, _ext = splitfn(fn) img_found = os.path.join(debug_dir, name + '_chess.png') outfile = os.path.join(debug_dir, name + '_undistorted.png') img = cv.imread(img_found) if img is None: continue h, w = img.shape[:2] newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h)) dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx) # crop and save the image x, y, w, h = roi dst = dst[y:y+h, x:x+w] print('Undistorted image written to: %s' % outfile) cv.imwrite(outfile, dst) print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()