/* dlaneg.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" integer dlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal * sigma, doublereal *pivmin, integer *r__) { /* System generated locals */ integer ret_val, i__1, i__2, i__3, i__4; /* Local variables */ integer j; doublereal p, t; integer bj; doublereal tmp; integer neg1, neg2; doublereal bsav, gamma, dplus; extern logical disnan_(doublereal *); integer negcnt; logical sawnan; doublereal dminus; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLANEG computes the Sturm count, the number of negative pivots */ /* encountered while factoring tridiagonal T - sigma I = L D L^T. */ /* This implementation works directly on the factors without forming */ /* the tridiagonal matrix T. The Sturm count is also the number of */ /* eigenvalues of T less than sigma. */ /* This routine is called from DLARRB. */ /* The current routine does not use the PIVMIN parameter but rather */ /* requires IEEE-754 propagation of Infinities and NaNs. This */ /* routine also has no input range restrictions but does require */ /* default exception handling such that x/0 produces Inf when x is */ /* non-zero, and Inf/Inf produces NaN. For more information, see: */ /* Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in */ /* Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on */ /* Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 */ /* (Tech report version in LAWN 172 with the same title.) */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The N diagonal elements of the diagonal matrix D. */ /* LLD (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (N-1) elements L(i)*L(i)*D(i). */ /* SIGMA (input) DOUBLE PRECISION */ /* Shift amount in T - sigma I = L D L^T. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot in the Sturm sequence. May be used */ /* when zero pivots are encountered on non-IEEE-754 */ /* architectures. */ /* R (input) INTEGER */ /* The twist index for the twisted factorization that is used */ /* for the negcount. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* Jason Riedy, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* Some architectures propagate Infinities and NaNs very slowly, so */ /* the code computes counts in BLKLEN chunks. Then a NaN can */ /* propagate at most BLKLEN columns before being detected. This is */ /* not a general tuning parameter; it needs only to be just large */ /* enough that the overhead is tiny in common cases. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --lld; --d__; /* Function Body */ negcnt = 0; /* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */ t = -(*sigma); i__1 = *r__ - 1; for (bj = 1; bj <= i__1; bj += 128) { neg1 = 0; bsav = t; /* Computing MIN */ i__3 = bj + 127, i__4 = *r__ - 1; i__2 = min(i__3,i__4); for (j = bj; j <= i__2; ++j) { dplus = d__[j] + t; if (dplus < 0.) { ++neg1; } tmp = t / dplus; t = tmp * lld[j] - *sigma; /* L21: */ } sawnan = disnan_(&t); /* Run a slower version of the above loop if a NaN is detected. */ /* A NaN should occur only with a zero pivot after an infinite */ /* pivot. In that case, substituting 1 for T/DPLUS is the */ /* correct limit. */ if (sawnan) { neg1 = 0; t = bsav; /* Computing MIN */ i__3 = bj + 127, i__4 = *r__ - 1; i__2 = min(i__3,i__4); for (j = bj; j <= i__2; ++j) { dplus = d__[j] + t; if (dplus < 0.) { ++neg1; } tmp = t / dplus; if (disnan_(&tmp)) { tmp = 1.; } t = tmp * lld[j] - *sigma; /* L22: */ } } negcnt += neg1; /* L210: */ } /* II) lower part: L D L^T - SIGMA I = U- D- U-^T */ p = d__[*n] - *sigma; i__1 = *r__; for (bj = *n - 1; bj >= i__1; bj += -128) { neg2 = 0; bsav = p; /* Computing MAX */ i__3 = bj - 127; i__2 = max(i__3,*r__); for (j = bj; j >= i__2; --j) { dminus = lld[j] + p; if (dminus < 0.) { ++neg2; } tmp = p / dminus; p = tmp * d__[j] - *sigma; /* L23: */ } sawnan = disnan_(&p); /* As above, run a slower version that substitutes 1 for Inf/Inf. */ if (sawnan) { neg2 = 0; p = bsav; /* Computing MAX */ i__3 = bj - 127; i__2 = max(i__3,*r__); for (j = bj; j >= i__2; --j) { dminus = lld[j] + p; if (dminus < 0.) { ++neg2; } tmp = p / dminus; if (disnan_(&tmp)) { tmp = 1.; } p = tmp * d__[j] - *sigma; /* L24: */ } } negcnt += neg2; /* L230: */ } /* III) Twist index */ /* T was shifted by SIGMA initially. */ gamma = t + *sigma + p; if (gamma < 0.) { ++negcnt; } ret_val = negcnt; return ret_val; } /* dlaneg_ */