/* dsytrf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__2 = 2; /* Subroutine */ int dsytrf_(char *uplo, integer *n, doublereal *a, integer * lda, integer *ipiv, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer j, k, kb, nb, iws; extern logical lsame_(char *, char *); integer nbmin, iinfo; logical upper; extern /* Subroutine */ int dsytf2_(char *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dlasyf_(char *, integer *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); integer ldwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYTRF computes the factorization of a real symmetric matrix A using */ /* the Bunch-Kaufman diagonal pivoting method. The form of the */ /* factorization is */ /* A = U*D*U**T or A = L*D*L**T */ /* where U (or L) is a product of permutation and unit upper (lower) */ /* triangular matrices, and D is symmetric and block diagonal with */ /* 1-by-1 and 2-by-2 diagonal blocks. */ /* This is the blocked version of the algorithm, calling Level 3 BLAS. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* N-by-N upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading N-by-N lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L (see below for further details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (output) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D. */ /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ /* interchanged and D(k,k) is a 1-by-1 diagonal block. */ /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of WORK. LWORK >=1. For best performance */ /* LWORK >= N*NB, where NB is the block size returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */ /* has been completed, but the block diagonal matrix D is */ /* exactly singular, and division by zero will occur if it */ /* is used to solve a system of equations. */ /* Further Details */ /* =============== */ /* If UPLO = 'U', then A = U*D*U', where */ /* U = P(n)*U(n)* ... *P(k)U(k)* ..., */ /* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */ /* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ /* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */ /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ /* ( I v 0 ) k-s */ /* U(k) = ( 0 I 0 ) s */ /* ( 0 0 I ) n-k */ /* k-s s n-k */ /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */ /* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */ /* and A(k,k), and v overwrites A(1:k-2,k-1:k). */ /* If UPLO = 'L', then A = L*D*L', where */ /* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */ /* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */ /* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ /* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */ /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ /* ( I 0 0 ) k-1 */ /* L(k) = ( 0 I 0 ) s */ /* ( 0 v I ) n-k-s+1 */ /* k-1 s n-k-s+1 */ /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */ /* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */ /* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); lquery = *lwork == -1; if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*lwork < 1 && ! lquery) { *info = -7; } if (*info == 0) { /* Determine the block size */ nb = ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); lwkopt = *n * nb; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYTRF", &i__1); return 0; } else if (lquery) { return 0; } nbmin = 2; ldwork = *n; if (nb > 1 && nb < *n) { iws = ldwork * nb; if (*lwork < iws) { /* Computing MAX */ i__1 = *lwork / ldwork; nb = max(i__1,1); /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "DSYTRF", uplo, n, &c_n1, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } else { iws = 1; } if (nb < nbmin) { nb = *n; } if (upper) { /* Factorize A as U*D*U' using the upper triangle of A */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* KB, where KB is the number of columns factorized by DLASYF; */ /* KB is either NB or NB-1, or K for the last block */ k = *n; L10: /* If K < 1, exit from loop */ if (k < 1) { goto L40; } if (k > nb) { /* Factorize columns k-kb+1:k of A and use blocked code to */ /* update columns 1:k-kb */ dlasyf_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1], &ldwork, &iinfo); } else { /* Use unblocked code to factorize columns 1:k of A */ dsytf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo); kb = k; } /* Set INFO on the first occurrence of a zero pivot */ if (*info == 0 && iinfo > 0) { *info = iinfo; } /* Decrease K and return to the start of the main loop */ k -= kb; goto L10; } else { /* Factorize A as L*D*L' using the lower triangle of A */ /* K is the main loop index, increasing from 1 to N in steps of */ /* KB, where KB is the number of columns factorized by DLASYF; */ /* KB is either NB or NB-1, or N-K+1 for the last block */ k = 1; L20: /* If K > N, exit from loop */ if (k > *n) { goto L40; } if (k <= *n - nb) { /* Factorize columns k:k+kb-1 of A and use blocked code to */ /* update columns k+kb:n */ i__1 = *n - k + 1; dlasyf_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k], &work[1], &ldwork, &iinfo); } else { /* Use unblocked code to factorize columns k:n of A */ i__1 = *n - k + 1; dsytf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo); kb = *n - k + 1; } /* Set INFO on the first occurrence of a zero pivot */ if (*info == 0 && iinfo > 0) { *info = iinfo + k - 1; } /* Adjust IPIV */ i__1 = k + kb - 1; for (j = k; j <= i__1; ++j) { if (ipiv[j] > 0) { ipiv[j] = ipiv[j] + k - 1; } else { ipiv[j] = ipiv[j] - k + 1; } /* L30: */ } /* Increase K and return to the start of the main loop */ k += kb; goto L20; } L40: work[1] = (doublereal) lwkopt; return 0; /* End of DSYTRF */ } /* dsytrf_ */