/* slaed8.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b3 = -1.f; static integer c__1 = 1; /* Subroutine */ int slaed8_(integer *icompq, integer *k, integer *n, integer *qsiz, real *d__, real *q, integer *ldq, integer *indxq, real *rho, integer *cutpnt, real *z__, real *dlamda, real *q2, integer *ldq2, real *w, integer *perm, integer *givptr, integer *givcol, real * givnum, integer *indxp, integer *indx, integer *info) { /* System generated locals */ integer q_dim1, q_offset, q2_dim1, q2_offset, i__1; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real c__; integer i__, j; real s, t; integer k2, n1, n2, jp, n1p1; real eps, tau, tol; integer jlam, imax, jmax; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *), sscal_(integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer * ); extern doublereal slapy2_(real *, real *), slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAED8 merges the two sets of eigenvalues together into a single */ /* sorted set. Then it tries to deflate the size of the problem. */ /* There are two ways in which deflation can occur: when two or more */ /* eigenvalues are close together or if there is a tiny element in the */ /* Z vector. For each such occurrence the order of the related secular */ /* equation problem is reduced by one. */ /* Arguments */ /* ========= */ /* ICOMPQ (input) INTEGER */ /* = 0: Compute eigenvalues only. */ /* = 1: Compute eigenvectors of original dense symmetric matrix */ /* also. On entry, Q contains the orthogonal matrix used */ /* to reduce the original matrix to tridiagonal form. */ /* K (output) INTEGER */ /* The number of non-deflated eigenvalues, and the order of the */ /* related secular equation. */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* QSIZ (input) INTEGER */ /* The dimension of the orthogonal matrix used to reduce */ /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ /* D (input/output) REAL array, dimension (N) */ /* On entry, the eigenvalues of the two submatrices to be */ /* combined. On exit, the trailing (N-K) updated eigenvalues */ /* (those which were deflated) sorted into increasing order. */ /* Q (input/output) REAL array, dimension (LDQ,N) */ /* If ICOMPQ = 0, Q is not referenced. Otherwise, */ /* on entry, Q contains the eigenvectors of the partially solved */ /* system which has been previously updated in matrix */ /* multiplies with other partially solved eigensystems. */ /* On exit, Q contains the trailing (N-K) updated eigenvectors */ /* (those which were deflated) in its last N-K columns. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* INDXQ (input) INTEGER array, dimension (N) */ /* The permutation which separately sorts the two sub-problems */ /* in D into ascending order. Note that elements in the second */ /* half of this permutation must first have CUTPNT added to */ /* their values in order to be accurate. */ /* RHO (input/output) REAL */ /* On entry, the off-diagonal element associated with the rank-1 */ /* cut which originally split the two submatrices which are now */ /* being recombined. */ /* On exit, RHO has been modified to the value required by */ /* SLAED3. */ /* CUTPNT (input) INTEGER */ /* The location of the last eigenvalue in the leading */ /* sub-matrix. min(1,N) <= CUTPNT <= N. */ /* Z (input) REAL array, dimension (N) */ /* On entry, Z contains the updating vector (the last row of */ /* the first sub-eigenvector matrix and the first row of the */ /* second sub-eigenvector matrix). */ /* On exit, the contents of Z are destroyed by the updating */ /* process. */ /* DLAMDA (output) REAL array, dimension (N) */ /* A copy of the first K eigenvalues which will be used by */ /* SLAED3 to form the secular equation. */ /* Q2 (output) REAL array, dimension (LDQ2,N) */ /* If ICOMPQ = 0, Q2 is not referenced. Otherwise, */ /* a copy of the first K eigenvectors which will be used by */ /* SLAED7 in a matrix multiply (SGEMM) to update the new */ /* eigenvectors. */ /* LDQ2 (input) INTEGER */ /* The leading dimension of the array Q2. LDQ2 >= max(1,N). */ /* W (output) REAL array, dimension (N) */ /* The first k values of the final deflation-altered z-vector and */ /* will be passed to SLAED3. */ /* PERM (output) INTEGER array, dimension (N) */ /* The permutations (from deflation and sorting) to be applied */ /* to each eigenblock. */ /* GIVPTR (output) INTEGER */ /* The number of Givens rotations which took place in this */ /* subproblem. */ /* GIVCOL (output) INTEGER array, dimension (2, N) */ /* Each pair of numbers indicates a pair of columns to take place */ /* in a Givens rotation. */ /* GIVNUM (output) REAL array, dimension (2, N) */ /* Each number indicates the S value to be used in the */ /* corresponding Givens rotation. */ /* INDXP (workspace) INTEGER array, dimension (N) */ /* The permutation used to place deflated values of D at the end */ /* of the array. INDXP(1:K) points to the nondeflated D-values */ /* and INDXP(K+1:N) points to the deflated eigenvalues. */ /* INDX (workspace) INTEGER array, dimension (N) */ /* The permutation used to sort the contents of D into ascending */ /* order. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --z__; --dlamda; q2_dim1 = *ldq2; q2_offset = 1 + q2_dim1; q2 -= q2_offset; --w; --perm; givcol -= 3; givnum -= 3; --indxp; --indx; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*n < 0) { *info = -3; } else if (*icompq == 1 && *qsiz < *n) { *info = -4; } else if (*ldq < max(1,*n)) { *info = -7; } else if (*cutpnt < min(1,*n) || *cutpnt > *n) { *info = -10; } else if (*ldq2 < max(1,*n)) { *info = -14; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED8", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } n1 = *cutpnt; n2 = *n - n1; n1p1 = n1 + 1; if (*rho < 0.f) { sscal_(&n2, &c_b3, &z__[n1p1], &c__1); } /* Normalize z so that norm(z) = 1 */ t = 1.f / sqrt(2.f); i__1 = *n; for (j = 1; j <= i__1; ++j) { indx[j] = j; /* L10: */ } sscal_(n, &t, &z__[1], &c__1); *rho = (r__1 = *rho * 2.f, dabs(r__1)); /* Sort the eigenvalues into increasing order */ i__1 = *n; for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) { indxq[i__] += *cutpnt; /* L20: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = d__[indxq[i__]]; w[i__] = z__[indxq[i__]]; /* L30: */ } i__ = 1; j = *cutpnt + 1; slamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = dlamda[indx[i__]]; z__[i__] = w[indx[i__]]; /* L40: */ } /* Calculate the allowable deflation tolerence */ imax = isamax_(n, &z__[1], &c__1); jmax = isamax_(n, &d__[1], &c__1); eps = slamch_("Epsilon"); tol = eps * 8.f * (r__1 = d__[jmax], dabs(r__1)); /* If the rank-1 modifier is small enough, no more needs to be done */ /* except to reorganize Q so that its columns correspond with the */ /* elements in D. */ if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) { *k = 0; if (*icompq == 0) { i__1 = *n; for (j = 1; j <= i__1; ++j) { perm[j] = indxq[indx[j]]; /* L50: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { perm[j] = indxq[indx[j]]; scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1], &c__1); /* L60: */ } slacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq); } return 0; } /* If there are multiple eigenvalues then the problem deflates. Here */ /* the number of equal eigenvalues are found. As each equal */ /* eigenvalue is found, an elementary reflector is computed to rotate */ /* the corresponding eigensubspace so that the corresponding */ /* components of Z are zero in this new basis. */ *k = 0; *givptr = 0; k2 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; indxp[k2] = j; if (j == *n) { goto L110; } } else { jlam = j; goto L80; } /* L70: */ } L80: ++j; if (j > *n) { goto L100; } if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; indxp[k2] = j; } else { /* Check if eigenvalues are close enough to allow deflation. */ s = z__[jlam]; c__ = z__[j]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = slapy2_(&c__, &s); t = d__[j] - d__[jlam]; c__ /= tau; s = -s / tau; if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) { /* Deflation is possible. */ z__[j] = tau; z__[jlam] = 0.f; /* Record the appropriate Givens rotation */ ++(*givptr); givcol[(*givptr << 1) + 1] = indxq[indx[jlam]]; givcol[(*givptr << 1) + 2] = indxq[indx[j]]; givnum[(*givptr << 1) + 1] = c__; givnum[(*givptr << 1) + 2] = s; if (*icompq == 1) { srot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[ indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s); } t = d__[jlam] * c__ * c__ + d__[j] * s * s; d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__; d__[jlam] = t; --k2; i__ = 1; L90: if (k2 + i__ <= *n) { if (d__[jlam] < d__[indxp[k2 + i__]]) { indxp[k2 + i__ - 1] = indxp[k2 + i__]; indxp[k2 + i__] = jlam; ++i__; goto L90; } else { indxp[k2 + i__ - 1] = jlam; } } else { indxp[k2 + i__ - 1] = jlam; } jlam = j; } else { ++(*k); w[*k] = z__[jlam]; dlamda[*k] = d__[jlam]; indxp[*k] = jlam; jlam = j; } } goto L80; L100: /* Record the last eigenvalue. */ ++(*k); w[*k] = z__[jlam]; dlamda[*k] = d__[jlam]; indxp[*k] = jlam; L110: /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */ /* and Q2 respectively. The eigenvalues/vectors which were not */ /* deflated go into the first K slots of DLAMDA and Q2 respectively, */ /* while those which were deflated go into the last N - K slots. */ if (*icompq == 0) { i__1 = *n; for (j = 1; j <= i__1; ++j) { jp = indxp[j]; dlamda[j] = d__[jp]; perm[j] = indxq[indx[jp]]; /* L120: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { jp = indxp[j]; dlamda[j] = d__[jp]; perm[j] = indxq[indx[jp]]; scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1] , &c__1); /* L130: */ } } /* The deflated eigenvalues and their corresponding vectors go back */ /* into the last N - K slots of D and Q respectively. */ if (*k < *n) { if (*icompq == 0) { i__1 = *n - *k; scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1); } else { i__1 = *n - *k; scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1); i__1 = *n - *k; slacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(* k + 1) * q_dim1 + 1], ldq); } } return 0; /* End of SLAED8 */ } /* slaed8_ */