/* slalsa.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b7 = 1.f; static real c_b8 = 0.f; static integer c__2 = 2; /* Subroutine */ int slalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, real * u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real * z__, real *poles, integer *givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum, real *c__, real *s, real *work, integer * iwork, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1, nlvl, sqre, inode, ndiml; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); integer ndimr; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slals0_(integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, real * , real *, real *, integer *, real *, real *, real *, integer *), xerbla_(char *, integer *), slasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLALSA is an itermediate step in solving the least squares problem */ /* by computing the SVD of the coefficient matrix in compact form (The */ /* singular vectors are computed as products of simple orthorgonal */ /* matrices.). */ /* If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector */ /* matrix of an upper bidiagonal matrix to the right hand side; and if */ /* ICOMPQ = 1, SLALSA applies the right singular vector matrix to the */ /* right hand side. The singular vector matrices were generated in */ /* compact form by SLALSA. */ /* Arguments */ /* ========= */ /* ICOMPQ (input) INTEGER */ /* Specifies whether the left or the right singular vector */ /* matrix is involved. */ /* = 0: Left singular vector matrix */ /* = 1: Right singular vector matrix */ /* SMLSIZ (input) INTEGER */ /* The maximum size of the subproblems at the bottom of the */ /* computation tree. */ /* N (input) INTEGER */ /* The row and column dimensions of the upper bidiagonal matrix. */ /* NRHS (input) INTEGER */ /* The number of columns of B and BX. NRHS must be at least 1. */ /* B (input/output) REAL array, dimension ( LDB, NRHS ) */ /* On input, B contains the right hand sides of the least */ /* squares problem in rows 1 through M. */ /* On output, B contains the solution X in rows 1 through N. */ /* LDB (input) INTEGER */ /* The leading dimension of B in the calling subprogram. */ /* LDB must be at least max(1,MAX( M, N ) ). */ /* BX (output) REAL array, dimension ( LDBX, NRHS ) */ /* On exit, the result of applying the left or right singular */ /* vector matrix to B. */ /* LDBX (input) INTEGER */ /* The leading dimension of BX. */ /* U (input) REAL array, dimension ( LDU, SMLSIZ ). */ /* On entry, U contains the left singular vector matrices of all */ /* subproblems at the bottom level. */ /* LDU (input) INTEGER, LDU = > N. */ /* The leading dimension of arrays U, VT, DIFL, DIFR, */ /* POLES, GIVNUM, and Z. */ /* VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ). */ /* On entry, VT' contains the right singular vector matrices of */ /* all subproblems at the bottom level. */ /* K (input) INTEGER array, dimension ( N ). */ /* DIFL (input) REAL array, dimension ( LDU, NLVL ). */ /* where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */ /* DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ). */ /* On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */ /* distances between singular values on the I-th level and */ /* singular values on the (I -1)-th level, and DIFR(*, 2 * I) */ /* record the normalizing factors of the right singular vectors */ /* matrices of subproblems on I-th level. */ /* Z (input) REAL array, dimension ( LDU, NLVL ). */ /* On entry, Z(1, I) contains the components of the deflation- */ /* adjusted updating row vector for subproblems on the I-th */ /* level. */ /* POLES (input) REAL array, dimension ( LDU, 2 * NLVL ). */ /* On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */ /* singular values involved in the secular equations on the I-th */ /* level. */ /* GIVPTR (input) INTEGER array, dimension ( N ). */ /* On entry, GIVPTR( I ) records the number of Givens */ /* rotations performed on the I-th problem on the computation */ /* tree. */ /* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */ /* On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */ /* locations of Givens rotations performed on the I-th level on */ /* the computation tree. */ /* LDGCOL (input) INTEGER, LDGCOL = > N. */ /* The leading dimension of arrays GIVCOL and PERM. */ /* PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). */ /* On entry, PERM(*, I) records permutations done on the I-th */ /* level of the computation tree. */ /* GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ). */ /* On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */ /* values of Givens rotations performed on the I-th level on the */ /* computation tree. */ /* C (input) REAL array, dimension ( N ). */ /* On entry, if the I-th subproblem is not square, */ /* C( I ) contains the C-value of a Givens rotation related to */ /* the right null space of the I-th subproblem. */ /* S (input) REAL array, dimension ( N ). */ /* On entry, if the I-th subproblem is not square, */ /* S( I ) contains the S-value of a Givens rotation related to */ /* the right null space of the I-th subproblem. */ /* WORK (workspace) REAL array. */ /* The dimension must be at least N. */ /* IWORK (workspace) INTEGER array. */ /* The dimension must be at least 3 * N */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ /* California at Berkeley, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("SLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. */ /* For applying back the right singular vector factors, go to 50. */ if (*icompq == 1) { goto L50; } /* The nodes on the bottom level of the tree were solved */ /* by SLASDQ. The corresponding left and right singular vector */ /* matrices are in explicit form. First apply back the left */ /* singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node */ /* NL : number of rows of left subproblem */ /* NR : number of rows of right subproblem */ /* NLF: starting row of the left subproblem */ /* NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; sgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx); sgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx); /* L10: */ } /* Next copy the rows of B that correspond to unchanged rows */ /* in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; scopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx); /* L20: */ } /* Finally go through the left singular vector matrices of all */ /* the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on */ /* the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; slals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, & b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &work[1], info); /* L30: */ } /* L40: */ } goto L90; /* ICOMPQ = 1: applying back the right singular vector factors. */ L50: /* First now go through the right singular vector matrices of all */ /* the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on */ /* the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; slals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[ nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &work[1], info); /* L60: */ } /* L70: */ } /* The nodes on the bottom level of the tree were solved */ /* by SLASDQ. The corresponding right singular vector */ /* matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, & b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx); sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, & b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx); /* L80: */ } L90: return 0; /* End of SLALSA */ } /* slalsa_ */