/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and / or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if !defined(ANDROID) #include #include #include #include using namespace std; namespace { using namespace cv::softcascade; typedef vector svector; class ScaledDataset : public Dataset { public: ScaledDataset(const string& path, const int octave); virtual cv::Mat get(SampleType type, int idx) const; virtual int available(SampleType type) const; virtual ~ScaledDataset(); private: svector pos; svector neg; }; ScaledDataset::ScaledDataset(const string& path, const int oct) { cv::glob(path + cv::format("/octave_%d/*.png", oct), pos); cv::glob(path + "/*.png", neg); // Check: files not empty CV_Assert(pos.size() != size_t(0)); CV_Assert(neg.size() != size_t(0)); } cv::Mat ScaledDataset::get(SampleType type, int idx) const { const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx]; return cv::imread(src); } int ScaledDataset::available(SampleType type) const { return (int)((type == POSITIVE)? pos.size():neg.size()); } ScaledDataset::~ScaledDataset(){} } TEST(SoftCascade, training) { // // 2. check and open output file string outXmlPath = cv::tempfile(".xml"); cv::FileStorage fso(outXmlPath, cv::FileStorage::WRITE); ASSERT_TRUE(fso.isOpened()); std::vector octaves; { octaves.push_back(-1); octaves.push_back(0); } fso << "regression-cascade" << "{" << "stageType" << "BOOST" << "featureType" << "ICF" << "octavesNum" << 2 << "width" << 64 << "height" << 128 << "shrinkage" << 4 << "octaves" << "["; for (std::vector::const_iterator it = octaves.begin(); it != octaves.end(); ++it) { int nfeatures = 100; int shrinkage = 4; float octave = powf(2.f, (float)(*it)); cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage ); cv::Ptr pool = FeaturePool::create(model, nfeatures, 10); nfeatures = pool->size(); int npositives = 10; int nnegatives = 20; cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave), cvRound(64 * octave), cvRound(128 * octave)); cv::Ptr builder = ChannelFeatureBuilder::create("HOG6MagLuv"); cv::Ptr boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, builder); std::string path = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/sample_training_set"; ScaledDataset dataset(path, *it); if (boost->train(&dataset, pool, 3, 2)) { cv::Mat thresholds; boost->setRejectThresholds(thresholds); boost->write(fso, pool, thresholds); } } fso << "]" << "}"; fso.release(); cv::FileStorage actual(outXmlPath, cv::FileStorage::READ); cv::FileNode root = actual.getFirstTopLevelNode(); cv::FileNode fn = root["octaves"]; ASSERT_FALSE(fn.empty()); } #endif