// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" #include #include namespace opencv_test { namespace { const int W = 640; const int H = 480; //int window_size = 5; float focal_length = 525; float cx = W / 2.f + 0.5f; float cy = H / 2.f + 0.5f; Mat K = (Mat_(3, 3) << focal_length, 0, cx, 0, focal_length, cy, 0, 0, 1); Mat Kinv = K.inv(); void points3dToDepth16U(const Mat_& points3d, Mat& depthMap); void points3dToDepth16U(const Mat_& points3d, Mat& depthMap) { std::vector points3dvec; for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) points3dvec.push_back(Point3f(points3d(i, j)[0], points3d(i, j)[1], points3d(i, j)[2])); std::vector img_points; depthMap = Mat::zeros(H, W, CV_32F); Vec3f R(0.0, 0.0, 0.0); Vec3f T(0.0, 0.0, 0.0); cv::projectPoints(points3dvec, R, T, K, Mat(), img_points); float maxv = 0.f; int index = 0; for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { float value = (points3d(i, j))[2]; // value is the z depthMap.at(cvRound(img_points[index].y), cvRound(img_points[index].x)) = value; maxv = std::max(maxv, value); index++; } } double scale = ((1 << 16) - 1) / maxv; depthMap.convertTo(depthMap, CV_16U, scale); } struct Plane { public: Vec4d nd; Plane() : nd(1, 0, 0, 0) { } static Plane generate(RNG& rng) { // Gaussian 3D distribution is separable and spherically symmetrical // Being normalized, its points represent uniformly distributed points on a sphere (i.e. normal directions) double sigma = 1.0; Vec3d ngauss; ngauss[0] = rng.gaussian(sigma); ngauss[1] = rng.gaussian(sigma); ngauss[2] = rng.gaussian(sigma); ngauss = ngauss * (1.0 / cv::norm(ngauss)); double d = rng.uniform(-2.0, 2.0); Plane p; p.nd = Vec4d(ngauss[0], ngauss[1], ngauss[2], d); return p; } Vec3d pixelIntersection(double u, double v, const Matx33d& K_inv) { Vec3d uv1(u, v, 1); // pixel reprojected to camera space Matx31d pspace = K_inv * uv1; double d = this->nd[3]; double dotp = pspace.ddot({this->nd[0], this->nd[1], this->nd[2]}); double d_over_dotp = d / dotp; if (std::fabs(dotp) <= 1e-9) { d_over_dotp = 1.0; CV_LOG_INFO(NULL, "warning, dotp nearly 0! " << dotp); } Matx31d pmeet = pspace * (- d_over_dotp); return {pmeet(0, 0), pmeet(1, 0), pmeet(2, 0)}; } }; void gen_points_3d(std::vector& planes_out, Mat_ &plane_mask, Mat& points3d, Mat& normals, int n_planes, float scale, RNG& rng) { const double minGoodZ = 0.0001; const double maxGoodZ = 1000.0; std::vector planes; for (int i = 0; i < n_planes; i++) { bool found = false; for (int j = 0; j < 100; j++) { Plane px = Plane::generate(rng); // Check that area corners have good z values // So that they won't break rendering double x0 = double(i) * double(W) / double(n_planes); double x1 = double(i+1) * double(W) / double(n_planes); std::vector corners = {{x0, 0}, {x0, H - 1}, {x1, 0}, {x1, H - 1}}; double minz = std::numeric_limits::max(); double maxz = 0.0; for (auto p : corners) { Vec3d v = px.pixelIntersection(p.x, p.y, Kinv); minz = std::min(minz, v[2]); maxz = std::max(maxz, v[2]); } if (minz > minGoodZ && maxz < maxGoodZ) { planes.push_back(px); found = true; break; } } ASSERT_TRUE(found) << "Failed to generate proper random plane" << std::endl; } Mat_ < Vec4f > outp(H, W); Mat_ < Vec4f > outn(H, W); plane_mask.create(H, W); // n ( r - r_0) = 0 // n * r_0 = d // // r_0 = (0,0,0) // r[0] for (int v = 0; v < H; v++) { for (int u = 0; u < W; u++) { unsigned int plane_index = (unsigned int)((u / float(W)) * planes.size()); Plane plane = planes[plane_index]; Vec3f pt = Vec3f(plane.pixelIntersection((double)u, (double)v, Kinv) * scale); outp(v, u) = {pt[0], pt[1], pt[2], 0}; outn(v, u) = {(float)plane.nd[0], (float)plane.nd[1], (float)plane.nd[2], 0}; plane_mask(v, u) = (uchar)plane_index; } } planes_out = planes; points3d = outp; normals = outn; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// CV_ENUM(NormalComputers, RgbdNormals::RGBD_NORMALS_METHOD_FALS, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, RgbdNormals::RGBD_NORMALS_METHOD_SRI, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT); typedef std::tuple NormalsTestData; typedef std::tuple NormalsTestParams; const double threshold3d1d = 1e-12; // Right angle is the maximum angle possible between two normals const double hpi = CV_PI / 2.0; const int nTestCasesNormals = 5; class NormalsRandomPlanes : public ::testing::TestWithParam { protected: void SetUp() override { p = GetParam(); depth = std::get<0>(std::get<0>(p)); alg = static_cast(int(std::get<1>(std::get<0>(p)))); scale = std::get<2>(std::get<0>(p)); int idx = std::get<1>(p); rng = cvtest::TS::ptr()->get_rng(); rng.state += idx + nTestCasesNormals*int(scale) + alg*16 + depth*64; float diffThreshold = scale ? 100000.f : 50.f; normalsComputer = RgbdNormals::create(H, W, depth, K, 5, diffThreshold, alg); normalsComputer->cache(); } struct NormalsCompareResult { double meanErr; double maxErr; }; static NormalsCompareResult checkNormals(Mat_ normals, Mat_ ground_normals) { double meanErr = 0, maxErr = 0; for (int y = 0; y < normals.rows; ++y) { for (int x = 0; x < normals.cols; ++x) { Vec4f vec1 = normals(y, x), vec2 = ground_normals(y, x); vec1 = vec1 / cv::norm(vec1); vec2 = vec2 / cv::norm(vec2); double dot = vec1.ddot(vec2); // Just for rounding errors double err = std::abs(dot) < 1.0 ? std::min(std::acos(dot), std::acos(-dot)) : 0.0; meanErr += err; maxErr = std::max(maxErr, err); } } meanErr /= normals.rows * normals.cols; return { meanErr, maxErr }; } void runCase(bool scaleUp, int nPlanes, bool makeDepth, double meanThreshold, double maxThreshold, double threshold3d) { std::vector plane_params; Mat_ plane_mask; Mat points3d, ground_normals; gen_points_3d(plane_params, plane_mask, points3d, ground_normals, nPlanes, scaleUp ? 5000.f : 1.f, rng); Mat in; if (makeDepth) { points3dToDepth16U(points3d, in); } else { in = points3d; } TickMeter tm; tm.start(); Mat in_normals, normals3d; //TODO: check other methods when 16U input is implemented for them if (normalsComputer->getMethod() == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && in.channels() == 3) { std::vector channels; split(in, channels); normalsComputer->apply(channels[2], in_normals); normalsComputer->apply(in, normals3d); } else normalsComputer->apply(in, in_normals); tm.stop(); CV_LOG_INFO(NULL, "Speed: " << tm.getTimeMilli() << " ms"); Mat_ normals; in_normals.convertTo(normals, CV_32FC4); NormalsCompareResult res = checkNormals(normals, ground_normals); double err3d = 0.0; if (!normals3d.empty()) { Mat_ cvtNormals3d; normals3d.convertTo(cvtNormals3d, CV_32FC4); err3d = checkNormals(cvtNormals3d, ground_normals).maxErr; } EXPECT_LE(res.meanErr, meanThreshold); EXPECT_LE(res.maxErr, maxThreshold); EXPECT_LE(err3d, threshold3d); } NormalsTestParams p; int depth; RgbdNormals::RgbdNormalsMethod alg; bool scale; RNG rng; Ptr normalsComputer; }; //TODO Test NaNs in data TEST_P(NormalsRandomPlanes, check1plane) { double meanErr = std::get<3>(std::get<0>(p)); double maxErr = std::get<4>(std::get<0>(p)); // 1 plane, continuous scene, very low error.. runCase(scale, 1, false, meanErr, maxErr, threshold3d1d); } TEST_P(NormalsRandomPlanes, check3planes) { double meanErr = std::get<5>(std::get<0>(p)); double maxErr = hpi; // 3 discontinuities, more error expected runCase(scale, 3, false, meanErr, maxErr, threshold3d1d); } TEST_P(NormalsRandomPlanes, check1plane16u) { // TODO: check other algos as soon as they support 16U depth inputs if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && scale) { double meanErr = std::get<6>(std::get<0>(p)); double maxErr = hpi; runCase(false, 1, true, meanErr, maxErr, threshold3d1d); } else { throw SkipTestException("Not implemented for anything except LINEMOD with scale"); } } TEST_P(NormalsRandomPlanes, check3planes16u) { // TODO: check other algos as soon as they support 16U depth inputs if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && scale) { double meanErr = std::get<7>(std::get<0>(p)); double maxErr = hpi; runCase(false, 3, true, meanErr, maxErr, threshold3d1d); } else { throw SkipTestException("Not implemented for anything except LINEMOD with scale"); } } INSTANTIATE_TEST_CASE_P(RGBD_Normals, NormalsRandomPlanes, ::testing::Combine(::testing::Values( // 3 normal computer params + 5 thresholds: //depth, alg, scale, 1plane mean, 1plane max, 3planes mean, 1plane16u mean, 3planes16 mean NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, true, 0.00362, 0.08881, 0.02175, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, false, 0.00374, 0.10309, 0.01902, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, true, 0.00023, 0.00037, 0.01805, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_FALS, false, 0.00023, 0.00037, 0.01805, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, true, 0.00186, 0.08974, 0.04528, 0.21220, 0.17314}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, false, 0.00157, 0.01225, 0.04528, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, true, 0.00160, 0.06526, 0.04371, 0.28837, 0.28918}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, false, 0.00154, 0.06877, 0.04323, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, true, 0.01987, hpi, 0.03463, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, false, 0.01962, hpi, 0.03546, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, true, 0.01958, hpi, 0.03546, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_SRI, false, 0.01995, hpi, 0.03474, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, true, 0.000230, 0.00038, 0.00450, 0, 0}, NormalsTestData {CV_32F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, false, 0.000230, 0.00038, 0.00478, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, true, 0.000221, 0.00038, 0.00469, 0, 0}, NormalsTestData {CV_64F, RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, false, 0.000238, 0.00038, 0.00477, 0, 0} ), ::testing::Range(0, nTestCasesNormals))); /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// typedef std::tuple> NormalComputerThresholds; struct RenderedNormals: public ::testing::TestWithParam> { static Mat readYaml(std::string fname) { Mat img; FileStorage fs(fname, FileStorage::Mode::READ); if (fs.isOpened() && fs.getFirstTopLevelNode().name() == "testImg") { fs["testImg"] >> img; } return img; }; static Mat nanMask(Mat img) { int depth = img.depth(); Mat mask(img.size(), CV_8U); for (int y = 0; y < img.rows; y++) { uchar* maskRow = mask.ptr(y); if (depth == CV_32F) { Vec3f *imgrow = img.ptr(y); for (int x = 0; x < img.cols; x++) { maskRow[x] = (imgrow[x] == imgrow[x])*255; } } else if (depth == CV_64F) { Vec3d *imgrow = img.ptr(y); for (int x = 0; x < img.cols; x++) { maskRow[x] = (imgrow[x] == imgrow[x])*255; } } } return mask; } template static Mat flipAxesT(Mat pts, int flip) { Mat flipped(pts.size(), pts.type()); for (int y = 0; y < pts.rows; y++) { VT *inrow = pts.ptr(y); VT *outrow = flipped.ptr(y); for (int x = 0; x < pts.cols; x++) { VT n = inrow[x]; n[0] = (flip & FLIP_X) ? -n[0] : n[0]; n[1] = (flip & FLIP_Y) ? -n[1] : n[1]; n[2] = (flip & FLIP_Z) ? -n[2] : n[2]; outrow[x] = n; } } return flipped; } static const int FLIP_X = 1; static const int FLIP_Y = 2; static const int FLIP_Z = 4; static Mat flipAxes(Mat pts, int flip) { int depth = pts.depth(); if (depth == CV_32F) { return flipAxesT(pts, flip); } else if (depth == CV_64F) { return flipAxesT(pts, flip); } else { return Mat(); } } template static Mat_ normalsErrorT(Mat_ srcNormals, Mat_ dstNormals) { typedef typename VT::value_type Val; Mat out(srcNormals.size(), cv::traits::Depth::value, Scalar(0)); for (int y = 0; y < srcNormals.rows; y++) { VT *srcrow = srcNormals[y]; VT *dstrow = dstNormals[y]; Val *outrow = out.ptr(y); for (int x = 0; x < srcNormals.cols; x++) { VT sn = srcrow[x]; VT dn = dstrow[x]; Val dot = sn.dot(dn); Val v(0.0); // Just for rounding errors if (std::abs(dot) < 1) v = std::min(std::acos(dot), std::acos(-dot)); outrow[x] = v; } } return out; } static Mat normalsError(Mat srcNormals, Mat dstNormals) { int depth = srcNormals.depth(); int channels = srcNormals.channels(); if (depth == CV_32F) { if (channels == 3) { return normalsErrorT(srcNormals, dstNormals); } else if (channels == 4) { return normalsErrorT(srcNormals, dstNormals); } } else if (depth == CV_64F) { if (channels == 3) { return normalsErrorT(srcNormals, dstNormals); } else if (channels == 4) { return normalsErrorT(srcNormals, dstNormals); } } else { CV_Error(Error::StsInternal, "This type is unsupported"); } return Mat(); } }; TEST_P(RenderedNormals, check) { auto p = GetParam(); int depth = std::get<0>(p); auto alg = static_cast(int(std::get<0>(std::get<1>(p)))); bool scale = std::get<2>(p); std::string dataPath = cvtest::TS::ptr()->get_data_path(); // The depth rendered from scene OPENCV_TEST_DATA_PATH + "/cv/rgbd/normals_check/normals_scene.blend" std::string srcDepthFilename = dataPath + "/cv/rgbd/normals_check/depth.yaml.gz"; std::string srcNormalsFilename = dataPath + "/cv/rgbd/normals_check/normals%d.yaml.gz"; Mat srcDepth = readYaml(srcDepthFilename); ASSERT_FALSE(srcDepth.empty()) << "Failed to load depth data"; Size depthSize = srcDepth.size(); Mat srcNormals; std::array srcNormalsCh; for (int i = 0; i < 3; i++) { Mat m = readYaml(cv::format(srcNormalsFilename.c_str(), i)); ASSERT_FALSE(m.empty()) << "Failed to load normals data"; if (depth == CV_64F) { Mat c; m.convertTo(c, CV_64F); m = c; } srcNormalsCh[i] = m; } cv::merge(srcNormalsCh, srcNormals); // Convert saved normals from [0; 1] range to [-1; 1] srcNormals = srcNormals * 2.0 - 1.0; // Data obtained from Blender scene Matx33f intr(666.6667f, 0.f, 320.f, 0.f, 666.6667f, 240.f, 0.f, 0.f, 1.f); // Inverted camera rotation Matx33d rotm = cv::Quatd(0.7805, 0.4835, 0.2087, 0.3369).conjugate().toRotMat3x3(); cv::transform(srcNormals, srcNormals, rotm); Mat srcMask = srcDepth > 0; float diffThreshold = 50.f; if (scale) { srcDepth = srcDepth * 5000.0; diffThreshold = 100000.f; } Mat srcCloud; // The function with mask produces 1x(w*h) vector, this is not what we need // depthTo3d(srcDepth, intr, srcCloud, srcMask); depthTo3d(srcDepth, intr, srcCloud); Scalar qnan = Scalar::all(std::numeric_limits::quiet_NaN()); srcCloud.setTo(qnan, ~srcMask); srcDepth.setTo(qnan, ~srcMask); // For further result comparison srcNormals.setTo(qnan, ~srcMask); Ptr normalsComputer = RgbdNormals::create(depthSize.height, depthSize.width, depth, intr, 5, diffThreshold, alg); normalsComputer->cache(); Mat dstNormals, dstNormalsOrig, dstNormalsDepth; normalsComputer->apply(srcCloud, dstNormals); //TODO: add for other methods too when it's implemented if (alg == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD) { normalsComputer->apply(srcDepth, dstNormalsDepth); dstNormalsOrig = dstNormals.clone(); } // Remove 4th channel from dstNormals Mat newDstNormals; std::vector dstNormalsCh; split(dstNormals, dstNormalsCh); dstNormalsCh.resize(3); merge(dstNormalsCh, newDstNormals); dstNormals = newDstNormals; Mat dstMask = nanMask(dstNormals); // div by 8 because uchar is 8-bit double maskl2 = cv::norm(dstMask, srcMask, NORM_HAMMING) / 8; // Flipping Y and Z to correspond to srcNormals Mat flipped = flipAxes(dstNormals, FLIP_Y | FLIP_Z); dstNormals = flipped; Mat absdot = normalsError(srcNormals, dstNormals); Mat cmpMask = srcMask & dstMask; EXPECT_GT(countNonZero(cmpMask), 0); double nrml2 = cv::norm(absdot, NORM_L2, cmpMask); if (!dstNormalsDepth.empty()) { Mat abs3d = normalsError(dstNormalsOrig, dstNormalsDepth); double errInf = cv::norm(abs3d, NORM_INF, cmpMask); double errL2 = cv::norm(abs3d, NORM_L2, cmpMask); EXPECT_LE(errInf, 0.00085); EXPECT_LE(errL2, 0.07718); } auto th = std::get<1>(std::get<1>(p)); EXPECT_LE(nrml2, th.first); EXPECT_LE(maskl2, th.second); } INSTANTIATE_TEST_CASE_P(RGBD_Normals, RenderedNormals, ::testing::Combine(::testing::Values(CV_32F, CV_64F), ::testing::Values( NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_FALS, { 81.8210, 0}}, NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD, { 107.2710, 29168}}, NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_SRI, { 73.2027, 17693}}, NormalComputerThresholds { RgbdNormals::RGBD_NORMALS_METHOD_CROSS_PRODUCT, { 57.9832, 2531}}), ::testing::Values(true, false))); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// class RgbdPlaneGenerate : public ::testing::TestWithParam> { protected: void SetUp() override { auto p = GetParam(); idx = std::get<0>(p); checkNormals = std::get<1>(p); nPlanes = std::get<2>(p); } int idx; bool checkNormals; int nPlanes; }; TEST_P(RgbdPlaneGenerate, compute) { RNG &rng = cvtest::TS::ptr()->get_rng(); rng.state += idx; std::vector planes; Mat points3d, ground_normals; Mat_ gt_plane_mask; gen_points_3d(planes, gt_plane_mask, points3d, ground_normals, nPlanes, 1.f, rng); Mat plane_mask; std::vector plane_coefficients; Mat normals; if (checkNormals) { // First, get the normals int depth = CV_32F; Ptr normalsComputer = RgbdNormals::create(H, W, depth, K, 5, 50.f, RgbdNormals::RGBD_NORMALS_METHOD_FALS); normalsComputer->apply(points3d, normals); } findPlanes(points3d, normals, plane_mask, plane_coefficients); // Compare each found plane to each ground truth plane int n_planes = (int)plane_coefficients.size(); int n_gt_planes = (int)planes.size(); Mat_ matching(n_gt_planes, n_planes); for (int j = 0; j < n_gt_planes; ++j) { Mat gt_mask = gt_plane_mask == j; int n_gt = countNonZero(gt_mask); int n_max = 0, i_max = 0; for (int i = 0; i < n_planes; ++i) { Mat dst; bitwise_and(gt_mask, plane_mask == i, dst); matching(j, i) = countNonZero(dst); if (matching(j, i) > n_max) { n_max = matching(j, i); i_max = i; } } // Get the best match ASSERT_LE(float(n_max - n_gt) / n_gt, 0.001); // Compare the normals Vec3d normal(plane_coefficients[i_max][0], plane_coefficients[i_max][1], plane_coefficients[i_max][2]); Vec4d nd = planes[j].nd; ASSERT_GE(std::abs(Vec3d(nd[0], nd[1], nd[2]).dot(normal)), 0.95); } } // 1 plane, continuous scene, very low error // 3 planes, 3 discontinuities, more error expected INSTANTIATE_TEST_CASE_P(RGBD_Plane, RgbdPlaneGenerate, ::testing::Combine(::testing::Range(0, 10), ::testing::Values(false, true), ::testing::Values(1, 3))); TEST(RGBD_Plane, regression2309ValgrindCheck) { Mat points(640, 480, CV_32FC3, Scalar::all(0)); // Note, 640%9 is 1 and 480%9 is 3 int blockSize = 9; Mat mask; std::vector planes; // Will corrupt memory; valgrind gets triggered findPlanes(points, noArray(), mask, planes, blockSize); } }} // namespace