#include #include #include #include #include "opencv2/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/contrib.hpp" #include "opencv2/superres.hpp" #include "opencv2/superres/optical_flow.hpp" #include "opencv2/opencv_modules.hpp" using namespace std; using namespace cv; using namespace cv::superres; #define MEASURE_TIME(op) \ { \ TickMeter tm; \ tm.start(); \ op; \ tm.stop(); \ cout << tm.getTimeSec() << " sec" << endl; \ } static Ptr createOptFlow(const string& name, bool useGpu) { if (name == "farneback") { if (useGpu) return createOptFlow_Farneback_CUDA(); else return createOptFlow_Farneback(); } else if (name == "simple") return createOptFlow_Simple(); else if (name == "tvl1") { if (useGpu) return createOptFlow_DualTVL1_CUDA(); else return createOptFlow_DualTVL1(); } else if (name == "brox") return createOptFlow_Brox_CUDA(); else if (name == "pyrlk") return createOptFlow_PyrLK_CUDA(); else cerr << "Incorrect Optical Flow algorithm - " << name << endl; return Ptr(); } int main(int argc, const char* argv[]) { CommandLineParser cmd(argc, argv, "{ v video | | Input video }" "{ o output | | Output video }" "{ s scale | 4 | Scale factor }" "{ i iterations | 180 | Iteration count }" "{ t temporal | 4 | Radius of the temporal search area }" "{ f flow | farneback | Optical flow algorithm (farneback, simple, tvl1, brox, pyrlk) }" "{ g | false | CPU as default device, cuda for CUDA }" "{ h help | false | Print help message }" ); if (cmd.get("help")) { cout << "This sample demonstrates Super Resolution algorithms for video sequence" << endl; cmd.printMessage(); return EXIT_SUCCESS; } const string inputVideoName = cmd.get("video"); const string outputVideoName = cmd.get("output"); const int scale = cmd.get("scale"); const int iterations = cmd.get("iterations"); const int temporalAreaRadius = cmd.get("temporal"); const string optFlow = cmd.get("flow"); string gpuOption = cmd.get("gpu"); std::transform(gpuOption.begin(), gpuOption.end(), gpuOption.begin(), ::tolower); bool useCuda = gpuOption.compare("cuda") == 0; Ptr superRes; if (useCuda) superRes = createSuperResolution_BTVL1_CUDA(); else superRes = createSuperResolution_BTVL1(); Ptr of = createOptFlow(optFlow, useCuda); if (of.empty()) return EXIT_FAILURE; superRes->set("opticalFlow", of); superRes->set("scale", scale); superRes->set("iterations", iterations); superRes->set("temporalAreaRadius", temporalAreaRadius); Ptr frameSource; if (useCuda) { // Try to use gpu Video Decoding try { frameSource = createFrameSource_Video_CUDA(inputVideoName); Mat frame; frameSource->nextFrame(frame); } catch (const cv::Exception&) { frameSource.release(); } } if (!frameSource) frameSource = createFrameSource_Video(inputVideoName); // skip first frame, it is usually corrupted { Mat frame; frameSource->nextFrame(frame); cout << "Input : " << inputVideoName << " " << frame.size() << endl; cout << "Scale factor : " << scale << endl; cout << "Iterations : " << iterations << endl; cout << "Temporal radius : " << temporalAreaRadius << endl; cout << "Optical Flow : " << optFlow << endl; cout << "Mode : " << (useCuda ? "CUDA" : "CPU") << endl; } superRes->setInput(frameSource); VideoWriter writer; for (int i = 0;; ++i) { cout << '[' << setw(3) << i << "] : "; Mat result; MEASURE_TIME(superRes->nextFrame(result)); if (result.empty()) break; imshow("Super Resolution", result); if (waitKey(1000) > 0) break; if (!outputVideoName.empty()) { if (!writer.isOpened()) writer.open(outputVideoName, VideoWriter::fourcc('X', 'V', 'I', 'D'), 25.0, result.size()); writer << result; } } return 0; }