#include "opencv2/highgui/highgui.hpp" #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/objdetect/objdetect.hpp" #include #include #include #include using namespace cv; void help() { printf( "This program shows the use of the \"fern\" plannar PlanarObjectDetector point\n" "descriptor classifier\n" "Usage:\n" "./find_obj_ferns , default: box.png and box_in_scene.png\n\n"); return; } int main(int argc, char** argv) { int i; const char* object_filename = argc > 1 ? argv[1] : "box.png"; const char* scene_filename = argc > 2 ? argv[2] : "box_in_scene.png"; help(); Mat object = imread( object_filename, CV_LOAD_IMAGE_GRAYSCALE ); Mat scene = imread( scene_filename, CV_LOAD_IMAGE_GRAYSCALE ); if( !object.data || !scene.data ) { fprintf( stderr, "Can not load %s and/or %s\n", object_filename, scene_filename ); exit(-1); } double imgscale = 1; Mat image; resize(scene, image, Size(), 1./imgscale, 1./imgscale, INTER_CUBIC); cvNamedWindow("Object", 1); cvNamedWindow("Image", 1); cvNamedWindow("Object Correspondence", 1); Size patchSize(32, 32); LDetector ldetector(7, 20, 2, 2000, patchSize.width, 2); ldetector.setVerbose(true); PlanarObjectDetector detector; vector objpyr, imgpyr; int blurKSize = 3; double sigma = 0; GaussianBlur(object, object, Size(blurKSize, blurKSize), sigma, sigma); GaussianBlur(image, image, Size(blurKSize, blurKSize), sigma, sigma); buildPyramid(object, objpyr, ldetector.nOctaves-1); buildPyramid(image, imgpyr, ldetector.nOctaves-1); vector objKeypoints, imgKeypoints; PatchGenerator gen(0,256,5,true,0.8,1.2,-CV_PI/2,CV_PI/2,-CV_PI/2,CV_PI/2); string model_filename = format("%s_model.xml.gz", object_filename); printf("Trying to load %s ...\n", model_filename.c_str()); FileStorage fs(model_filename, FileStorage::READ); if( fs.isOpened() ) { detector.read(fs.getFirstTopLevelNode()); printf("Successfully loaded %s.\n", model_filename.c_str()); } else { printf("The file not found and can not be read. Let's train the model.\n"); printf("Step 1. Finding the robust keypoints ...\n"); ldetector.setVerbose(true); ldetector.getMostStable2D(object, objKeypoints, 100, gen); printf("Done.\nStep 2. Training ferns-based planar object detector ...\n"); detector.setVerbose(true); detector.train(objpyr, objKeypoints, patchSize.width, 100, 11, 10000, ldetector, gen); printf("Done.\nStep 3. Saving the model to %s ...\n", model_filename.c_str()); if( fs.open(model_filename, FileStorage::WRITE) ) detector.write(fs, "ferns_model"); } printf("Now find the keypoints in the image, try recognize them and compute the homography matrix\n"); fs.release(); vector dst_corners; Mat correspond( object.rows + image.rows, std::max(object.cols, image.cols), CV_8UC3); correspond = Scalar(0.); Mat part(correspond, Rect(0, 0, object.cols, object.rows)); cvtColor(object, part, CV_GRAY2BGR); part = Mat(correspond, Rect(0, object.rows, image.cols, image.rows)); cvtColor(image, part, CV_GRAY2BGR); vector pairs; Mat H; double t = (double)getTickCount(); objKeypoints = detector.getModelPoints(); ldetector(imgpyr, imgKeypoints, 300); std::cout << "Object keypoints: " << objKeypoints.size() << "\n"; std::cout << "Image keypoints: " << imgKeypoints.size() << "\n"; bool found = detector(imgpyr, imgKeypoints, H, dst_corners, &pairs); t = (double)getTickCount() - t; printf("%gms\n", t*1000/getTickFrequency()); if( found ) { for( i = 0; i < 4; i++ ) { Point r1 = dst_corners[i%4]; Point r2 = dst_corners[(i+1)%4]; line( correspond, Point(r1.x, r1.y+object.rows), Point(r2.x, r2.y+object.rows), Scalar(0,0,255) ); } } for( i = 0; i < (int)pairs.size(); i += 2 ) { line( correspond, objKeypoints[pairs[i]].pt, imgKeypoints[pairs[i+1]].pt + Point2f(0,(float)object.rows), Scalar(0,255,0) ); } imshow( "Object Correspondence", correspond ); Mat objectColor; cvtColor(object, objectColor, CV_GRAY2BGR); for( i = 0; i < (int)objKeypoints.size(); i++ ) { circle( objectColor, objKeypoints[i].pt, 2, Scalar(0,0,255), -1 ); circle( objectColor, objKeypoints[i].pt, (1 << objKeypoints[i].octave)*15, Scalar(0,255,0), 1 ); } Mat imageColor; cvtColor(image, imageColor, CV_GRAY2BGR); for( i = 0; i < (int)imgKeypoints.size(); i++ ) { circle( imageColor, imgKeypoints[i].pt, 2, Scalar(0,0,255), -1 ); circle( imageColor, imgKeypoints[i].pt, (1 << imgKeypoints[i].octave)*15, Scalar(0,255,0), 1 ); } imwrite("correspond.png", correspond ); imshow( "Object", objectColor ); imshow( "Image", imageColor ); waitKey(0); return 0; }