/********************************************************************* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Willow Garage nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *********************************************************************/ /** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */ #include "precomp.hpp" #include //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// namespace cv { const float HARRIS_K = 0.04f; const int DESCRIPTOR_SIZE = 32; /** * Function that computes the Harris responses in a * blockSize x blockSize patch at given points in an image */ static void HarrisResponses(const Mat& img, vector& pts, int blockSize, float harris_k) { CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 ); size_t ptidx, ptsize = pts.size(); const uchar* ptr00 = img.ptr(); int step = (int)(img.step/img.elemSize1()); int r = blockSize/2; float scale = (1 << 2) * blockSize * 255.0f; scale = 1.0f / scale; float scale_sq_sq = scale * scale * scale * scale; AutoBuffer ofsbuf(blockSize*blockSize); int* ofs = ofsbuf; for( int i = 0; i < blockSize; i++ ) for( int j = 0; j < blockSize; j++ ) ofs[i*blockSize + j] = (int)(i*step + j); for( ptidx = 0; ptidx < ptsize; ptidx++ ) { int x0 = cvRound(pts[ptidx].pt.x - r); int y0 = cvRound(pts[ptidx].pt.y - r); const uchar* ptr0 = ptr00 + y0*step + x0; int a = 0, b = 0, c = 0; for( int k = 0; k < blockSize*blockSize; k++ ) { const uchar* ptr = ptr0 + ofs[k]; int Ix = (ptr[1] - ptr[-1])*2 + (ptr[-step+1] - ptr[-step-1]) + (ptr[step+1] - ptr[step-1]); int Iy = (ptr[step] - ptr[-step])*2 + (ptr[step-1] - ptr[-step-1]) + (ptr[step+1] - ptr[-step+1]); a += Ix*Ix; b += Iy*Iy; c += Ix*Iy; } pts[ptidx].response = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b))*scale_sq_sq; } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static float IC_Angle(const Mat& image, const int half_k, Point2f pt, const vector & u_max) { int m_01 = 0, m_10 = 0; const uchar* center = &image.at (cvRound(pt.y), cvRound(pt.x)); // Treat the center line differently, v=0 for (int u = -half_k; u <= half_k; ++u) m_10 += u * center[u]; // Go line by line in the circular patch int step = (int)image.step1(); for (int v = 1; v <= half_k; ++v) { // Proceed over the two lines int v_sum = 0; int d = u_max[v]; for (int u = -d; u <= d; ++u) { int val_plus = center[u + v*step], val_minus = center[u - v*step]; v_sum += (val_plus - val_minus); m_10 += u * (val_plus + val_minus); } m_01 += v * v_sum; } return fastAtan2((float)m_01, (float)m_10); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static void computeOrbDescriptor(const KeyPoint& kpt, const Mat& img, const Point* pattern, uchar* desc, int dsize, int WTA_K) { float angle = kpt.angle; //angle = cvFloor(angle/12)*12.f; angle *= (float)(CV_PI/180.f); float a = (float)cos(angle), b = (float)sin(angle); const uchar* center = &img.at(cvRound(kpt.pt.y), cvRound(kpt.pt.x)); int step = (int)img.step; #if 1 #define GET_VALUE(idx) \ center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \ cvRound(pattern[idx].x*a - pattern[idx].y*b)] #else float x, y; int ix, iy; #define GET_VALUE(idx) \ (x = pattern[idx].x*a - pattern[idx].y*b, \ y = pattern[idx].x*b + pattern[idx].y*a, \ ix = cvFloor(x), iy = cvFloor(y), \ x -= ix, y -= iy, \ cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \ center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y)) #endif if( WTA_K == 2 ) { for (int i = 0; i < dsize; ++i, pattern += 16) { int t0, t1, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); val = t0 < t1; t0 = GET_VALUE(2); t1 = GET_VALUE(3); val |= (t0 < t1) << 1; t0 = GET_VALUE(4); t1 = GET_VALUE(5); val |= (t0 < t1) << 2; t0 = GET_VALUE(6); t1 = GET_VALUE(7); val |= (t0 < t1) << 3; t0 = GET_VALUE(8); t1 = GET_VALUE(9); val |= (t0 < t1) << 4; t0 = GET_VALUE(10); t1 = GET_VALUE(11); val |= (t0 < t1) << 5; t0 = GET_VALUE(12); t1 = GET_VALUE(13); val |= (t0 < t1) << 6; t0 = GET_VALUE(14); t1 = GET_VALUE(15); val |= (t0 < t1) << 7; desc[i] = (uchar)val; } } else if( WTA_K == 3 ) { for (int i = 0; i < dsize; ++i, pattern += 12) { int t0, t1, t2, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; desc[i] = (uchar)val; } } else if( WTA_K == 4 ) { for (int i = 0; i < dsize; ++i, pattern += 16) { int t0, t1, t2, t3, u, v, k, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); t3 = GET_VALUE(3); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val = k; t0 = GET_VALUE(4); t1 = GET_VALUE(5); t2 = GET_VALUE(6); t3 = GET_VALUE(7); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 2; t0 = GET_VALUE(8); t1 = GET_VALUE(9); t2 = GET_VALUE(10); t3 = GET_VALUE(11); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 4; t0 = GET_VALUE(12); t1 = GET_VALUE(13); t2 = GET_VALUE(14); t3 = GET_VALUE(15); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 6; desc[i] = (uchar)val; } } else CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." ); #undef GET_VALUE } static void initializeOrbPattern( const Point* pattern0, vector& pattern, int ntuples, int tupleSize, int poolSize ) { RNG rng(0x12345678); int i, k, k1; pattern.resize(ntuples*tupleSize); for( i = 0; i < ntuples; i++ ) { for( k = 0; k < tupleSize; k++ ) { for(;;) { int idx = rng.uniform(0, poolSize); Point pt = pattern0[idx]; for( k1 = 0; k1 < k; k1++ ) if( pattern[tupleSize*i + k1] == pt ) break; if( k1 == k ) { pattern[tupleSize*i + k] = pt; break; } } } } } static int bit_pattern_31_[256*4] = { 8,-3, 9,5/*mean (0), correlation (0)*/, 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, -7,1, -6,7/*mean (0.175), correlation (0.500024)*/, -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ }; static void makeRandomPattern(int patchSize, Point* pattern, int npoints) { RNG rng(0x34985739); // we always start with a fixed seed, // to make patterns the same on each run for( int i = 0; i < npoints; i++ ) { pattern[i].x = rng.uniform(-patchSize/2, patchSize/2+1); pattern[i].y = rng.uniform(-patchSize/2, patchSize/2+1); } } static inline float getScale(int level, int firstLevel, double scaleFactor) { return (float)std::pow(scaleFactor, (double)(level - firstLevel)); } /** Constructor * @param detector_params parameters to use */ ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold, int _firstLevel, int _WTA_K, int _scoreType, int _patchSize) : nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels), edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K), scoreType(_scoreType), patchSize(_patchSize) {} int ORB::descriptorSize() const { return kBytes; } int ORB::descriptorType() const { return CV_8U; } /** Compute the ORB features and descriptors on an image * @param img the image to compute the features and descriptors on * @param mask the mask to apply * @param keypoints the resulting keypoints */ void ORB::operator()(InputArray image, InputArray mask, vector& keypoints) const { (*this)(image, mask, keypoints, noArray(), false); } /** Compute the ORB keypoint orientations * @param image the image to compute the features and descriptors on * @param integral_image the integral image of the iamge (can be empty, but the computation will be slower) * @param scale the scale at which we compute the orientation * @param keypoints the resulting keypoints */ static void computeOrientation(const Mat& image, vector& keypoints, int halfPatchSize, const vector& umax) { // Process each keypoint for (vector::iterator keypoint = keypoints.begin(), keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) { keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax); } } /** Compute the ORB keypoints on an image * @param image_pyramid the image pyramid to compute the features and descriptors on * @param mask_pyramid the masks to apply at every level * @param keypoints the resulting keypoints, clustered per level */ static void computeKeyPoints(const vector& imagePyramid, const vector& maskPyramid, vector >& allKeypoints, int nfeatures, int firstLevel, double scaleFactor, int edgeThreshold, int patchSize, int scoreType ) { int nlevels = (int)imagePyramid.size(); vector nfeaturesPerLevel(nlevels); // fill the extractors and descriptors for the corresponding scales float factor = (float)(1.0 / scaleFactor); float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels)); int sumFeatures = 0; for( int level = 0; level < nlevels-1; level++ ) { nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale); sumFeatures += nfeaturesPerLevel[level]; ndesiredFeaturesPerScale *= factor; } nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0); // Make sure we forget about what is too close to the boundary //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2); // pre-compute the end of a row in a circular patch int halfPatchSize = patchSize / 2; vector umax(halfPatchSize + 1); int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1); int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2); for (v = 0; v <= vmax; ++v) umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v)); // Make sure we are symmetric for (v = halfPatchSize, v0 = 0; v >= vmin; --v) { while (umax[v0] == umax[v0 + 1]) ++v0; umax[v] = v0; ++v0; } allKeypoints.resize(nlevels); for (int level = 0; level < nlevels; ++level) { int featuresNum = nfeaturesPerLevel[level]; allKeypoints[level].reserve(featuresNum*2); vector & keypoints = allKeypoints[level]; // Detect FAST features, 20 is a good threshold FastFeatureDetector fd(20, true); fd.detect(imagePyramid[level], keypoints, maskPyramid[level]); // Remove keypoints very close to the border KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold); if( scoreType == ORB::HARRIS_SCORE ) { // Keep more points than necessary as FAST does not give amazing corners KeyPointsFilter::retainBest(keypoints, 2 * featuresNum); // Compute the Harris cornerness (better scoring than FAST) HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K); } //cull to the final desired level, using the new Harris scores or the original FAST scores. KeyPointsFilter::retainBest(keypoints, featuresNum); float sf = getScale(level, firstLevel, scaleFactor); // Set the level of the coordinates for (vector::iterator keypoint = keypoints.begin(), keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) { keypoint->octave = level; keypoint->size = patchSize*sf; } computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax); } } /** Compute the ORB decriptors * @param image the image to compute the features and descriptors on * @param integral_image the integral image of the image (can be empty, but the computation will be slower) * @param level the scale at which we compute the orientation * @param keypoints the keypoints to use * @param descriptors the resulting descriptors */ static void computeDescriptors(const Mat& image, vector& keypoints, Mat& descriptors, const vector& pattern, int dsize, int WTA_K) { //convert to grayscale if more than one color CV_Assert(image.type() == CV_8UC1); //create the descriptor mat, keypoints.size() rows, BYTES cols descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1); for (size_t i = 0; i < keypoints.size(); i++) computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K); } /** Compute the ORB features and descriptors on an image * @param img the image to compute the features and descriptors on * @param mask the mask to apply * @param keypoints the resulting keypoints * @param descriptors the resulting descriptors * @param do_keypoints if true, the keypoints are computed, otherwise used as an input * @param do_descriptors if true, also computes the descriptors */ void ORB::operator()( InputArray _image, InputArray _mask, vector& _keypoints, OutputArray _descriptors, bool useProvidedKeypoints) const { bool do_keypoints = !useProvidedKeypoints; bool do_descriptors = _descriptors.needed(); if( (!do_keypoints && !do_descriptors) || _image.empty() ) return; //ROI handling const int HARRIS_BLOCK_SIZE = 9; int halfPatchSize = patchSize / 2; int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1; Mat image = _image.getMat(), mask = _mask.getMat(); if( image.type() != CV_8UC1 ) cvtColor(_image, image, CV_BGR2GRAY); int levelsNum = this->nlevels; if( !do_keypoints ) { // if we have pre-computed keypoints, they may use more levels than it is set in parameters // !!!TODO!!! implement more correct method, independent from the used keypoint detector. // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and // for each cluster compute the corresponding image. // // In short, ultimately the descriptor should // ignore octave parameter and deal only with the keypoint size. levelsNum = 0; for( size_t i = 0; i < _keypoints.size(); i++ ) levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0)); levelsNum++; } // Pre-compute the scale pyramids vector imagePyramid(levelsNum), maskPyramid(levelsNum); for (int level = 0; level < levelsNum; ++level) { float scale = 1/getScale(level, firstLevel, scaleFactor); Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale)); Size wholeSize(sz.width + border*2, sz.height + border*2); Mat temp(wholeSize, image.type()), masktemp; imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height)); if( !mask.empty() ) { masktemp = Mat(wholeSize, mask.type()); maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height)); } // Compute the resized image if( level != firstLevel ) { if( level < firstLevel ) { resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR); if (!mask.empty()) resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR); } else { resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR); if (!mask.empty()) { resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR); threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO); } } copyMakeBorder(imagePyramid[level], temp, border, border, border, border, BORDER_REFLECT_101+BORDER_ISOLATED); if (!mask.empty()) copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border, BORDER_CONSTANT+BORDER_ISOLATED); } else { copyMakeBorder(image, temp, border, border, border, border, BORDER_REFLECT_101); if( !mask.empty() ) copyMakeBorder(mask, masktemp, border, border, border, border, BORDER_CONSTANT+BORDER_ISOLATED); } } // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand vector < vector > allKeypoints; if( do_keypoints ) { // Get keypoints, those will be far enough from the border that no check will be required for the descriptor computeKeyPoints(imagePyramid, maskPyramid, allKeypoints, nfeatures, firstLevel, scaleFactor, edgeThreshold, patchSize, scoreType); // make sure we have the right number of keypoints keypoints /*vector temp; for (int level = 0; level < n_levels; ++level) { vector& keypoints = all_keypoints[level]; temp.insert(temp.end(), keypoints.begin(), keypoints.end()); keypoints.clear(); } KeyPoint::retainBest(temp, n_features_); for (vector::iterator keypoint = temp.begin(), keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint) all_keypoints[keypoint->octave].push_back(*keypoint);*/ } else { // Remove keypoints very close to the border KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold); // Cluster the input keypoints depending on the level they were computed at allKeypoints.resize(levelsNum); for (vector::iterator keypoint = _keypoints.begin(), keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint) allKeypoints[keypoint->octave].push_back(*keypoint); // Make sure we rescale the coordinates for (int level = 0; level < levelsNum; ++level) { if (level == firstLevel) continue; vector & keypoints = allKeypoints[level]; float scale = 1/getScale(level, firstLevel, scaleFactor); for (vector::iterator keypoint = keypoints.begin(), keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) keypoint->pt *= scale; } } Mat descriptors; vector pattern; if( do_descriptors ) { int nkeypoints = 0; for (int level = 0; level < levelsNum; ++level) nkeypoints += (int)allKeypoints[level].size(); if( nkeypoints == 0 ) _descriptors.release(); else { _descriptors.create(nkeypoints, descriptorSize(), CV_8U); descriptors = _descriptors.getMat(); } const int npoints = 512; Point patternbuf[npoints]; const Point* pattern0 = (const Point*)bit_pattern_31_; if( patchSize != 31 ) { pattern0 = patternbuf; makeRandomPattern(patchSize, patternbuf, npoints); } CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 ); if( WTA_K == 2 ) std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern)); else { int ntuples = descriptorSize()*4; initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints); } } _keypoints.clear(); int offset = 0; for (int level = 0; level < levelsNum; ++level) { // Get the features and compute their orientation vector& keypoints = allKeypoints[level]; int nkeypoints = (int)keypoints.size(); // Compute the descriptors if (do_descriptors) { Mat desc; if (!descriptors.empty()) { desc = descriptors.rowRange(offset, offset + nkeypoints); } offset += nkeypoints; // preprocess the resized image Mat& workingMat = imagePyramid[level]; //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101); GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101); computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K); } // Copy to the output data if (level != firstLevel) { float scale = getScale(level, firstLevel, scaleFactor); for (vector::iterator keypoint = keypoints.begin(), keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint) keypoint->pt *= scale; } // And add the keypoints to the output _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end()); } } void ORB::detectImpl( const Mat& image, vector& keypoints, const Mat& mask) const { (*this)(image, mask, keypoints, noArray(), false); } void ORB::computeImpl( const Mat& image, vector& keypoints, Mat& descriptors) const { (*this)(image, Mat(), keypoints, descriptors, true); } }