/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_nogpu(); } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace device { namespace stereobp { void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump); template void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); template void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); template void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); template void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); template void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz& disp, cudaStream_t stream); } }}} using namespace ::cv::gpu::device::stereobp; namespace { const float DEFAULT_MAX_DATA_TERM = 10.0f; const float DEFAULT_DATA_WEIGHT = 0.07f; const float DEFAULT_MAX_DISC_TERM = 1.7f; const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; } void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) { ndisp = width / 4; if ((ndisp & 1) != 0) ndisp++; int mm = ::max(width, height); iters = mm / 100 + 2; levels = (int)(::log(static_cast(mm)) + 1) * 4 / 5; if (levels == 0) levels++; } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), msg_type(msg_type_), datas(levels_) { } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(max_data_term_), data_weight(data_weight_), max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), msg_type(msg_type_), datas(levels_) { } namespace { class StereoBeliefPropagationImpl { public: StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_, GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_, GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_, vector& datas_, GpuMat& out_) : rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_), zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f) { CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels); CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S); CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits::max()); } void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream); static const comp_data_t comp_data_callers[2][5] = { {0, comp_data_gpu, 0, comp_data_gpu, comp_data_gpu}, {0, comp_data_gpu, 0, comp_data_gpu, comp_data_gpu} }; CV_Assert(left.size() == right.size() && left.type() == right.type()); CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4); rows = left.rows; cols = left.cols; int divisor = (int)pow(2.f, rthis.levels - 1.0f); int lowest_cols = cols / divisor; int lowest_rows = rows / divisor; const int min_image_dim_size = 2; CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); init(stream); datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type); comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream)); calcBP(disp, stream); } void operator()(const GpuMat& data, GpuMat& disp, Stream& stream) { CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0)); rows = data.rows / rthis.ndisp; cols = data.cols; int divisor = (int)pow(2.f, rthis.levels - 1.0f); int lowest_cols = cols / divisor; int lowest_rows = rows / divisor; const int min_image_dim_size = 2; CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); init(stream); datas[0] = data; calcBP(disp, stream); } private: void init(Stream& stream) { u.create(rows * rthis.ndisp, cols, rthis.msg_type); d.create(rows * rthis.ndisp, cols, rthis.msg_type); l.create(rows * rthis.ndisp, cols, rthis.msg_type); r.create(rows * rthis.ndisp, cols, rthis.msg_type); if (rthis.levels & 1) { //can clear less area if (stream) { stream.enqueueMemSet(u, zero); stream.enqueueMemSet(d, zero); stream.enqueueMemSet(l, zero); stream.enqueueMemSet(r, zero); } else { u.setTo(zero); d.setTo(zero); l.setTo(zero); r.setTo(zero); } } if (rthis.levels > 1) { int less_rows = (rows + 1) / 2; int less_cols = (cols + 1) / 2; u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type); if ((rthis.levels & 1) == 0) { if (stream) { stream.enqueueMemSet(u2, zero); stream.enqueueMemSet(d2, zero); stream.enqueueMemSet(l2, zero); stream.enqueueMemSet(r2, zero); } else { u2.setTo(zero); d2.setTo(zero); l2.setTo(zero); r2.setTo(zero); } } } load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump); datas.resize(rthis.levels); cols_all.resize(rthis.levels); rows_all.resize(rthis.levels); cols_all[0] = cols; rows_all[0] = rows; } void calcBP(GpuMat& disp, Stream& stream) { typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream); static const data_step_down_t data_step_down_callers[2] = { data_step_down_gpu, data_step_down_gpu }; typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream); static const level_up_messages_t level_up_messages_callers[2] = { level_up_messages_gpu, level_up_messages_gpu }; typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream); static const calc_all_iterations_t calc_all_iterations_callers[2] = { calc_all_iterations_gpu, calc_all_iterations_gpu }; typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz& disp, cudaStream_t stream); static const output_t output_callers[2] = { output_gpu, output_gpu }; const int funcIdx = rthis.msg_type == CV_32F; cudaStream_t cudaStream = StreamAccessor::getStream(stream); for (int i = 1; i < rthis.levels; ++i) { cols_all[i] = (cols_all[i-1] + 1) / 2; rows_all[i] = (rows_all[i-1] + 1) / 2; datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type); data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream); } PtrStepSzb mus[] = {u, u2}; PtrStepSzb mds[] = {d, d2}; PtrStepSzb mrs[] = {r, r2}; PtrStepSzb mls[] = {l, l2}; int mem_idx = (rthis.levels & 1) ? 0 : 1; for (int i = rthis.levels - 1; i >= 0; --i) { // for lower level we have already computed messages by setting to zero if (i != rthis.levels - 1) level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream); calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream); mem_idx = (mem_idx + 1) & 1; } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); if (stream) stream.enqueueMemSet(out, zero); else out.setTo(zero); output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream); if (disp.type() != CV_16S) { if (stream) stream.enqueueConvert(out, disp, disp.type()); else out.convertTo(disp, disp.type()); } } StereoBeliefPropagation& rthis; GpuMat& u; GpuMat& d; GpuMat& l; GpuMat& r; GpuMat& u2; GpuMat& d2; GpuMat& l2; GpuMat& r2; vector& datas; GpuMat& out; const Scalar zero; const float scale; int rows, cols; vector cols_all, rows_all; }; } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); impl(left, right, disp, stream); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream) { StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out); impl(data, disp, stream); } #endif /* !defined (HAVE_CUDA) */