/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Shengen Yan,yanshengen@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #if defined (DOUBLE_SUPPORT) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif /////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////Macro for border type//////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// #ifdef BORDER_REPLICATE //BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh #define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (l_edge) : (i)) #define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (r_edge)-1 : (addr)) #define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (t_edge) :(i)) #define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (b_edge)-1 :(addr)) #endif #ifdef BORDER_REFLECT //BORDER_REFLECT: fedcba|abcdefgh|hgfedcb #define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i)-1 : (i)) #define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr)) #define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i)-1 : (i)) #define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-1+((b_edge)<<1) : (addr)) #endif #ifdef BORDER_REFLECT101 //BORDER_REFLECT101: gfedcb|abcdefgh|gfedcba #define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i) : (i)) #define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr)) #define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i) : (i)) #define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-2+((b_edge)<<1) : (addr)) #endif #ifdef BORDER_WRAP //BORDER_WRAP: cdefgh|abcdefgh|abcdefg #define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (i)+(r_edge) : (i)) #define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (i)-(r_edge) : (addr)) #define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (i)+(b_edge) : (i)) #define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (i)-(b_edge) : (addr)) #endif #define THREADS 256 #define ELEM(i, l_edge, r_edge, elem1, elem2) (i) >= (l_edge) && (i) < (r_edge) ? (elem1) : (elem2) /////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////calcHarris//////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////// __kernel void calcMinEigenVal(__global const float *Dx,__global const float *Dy, __global float *dst, int dx_offset, int dx_whole_rows, int dx_whole_cols, int dx_step, int dy_offset, int dy_whole_rows, int dy_whole_cols, int dy_step, int dst_offset, int dst_rows, int dst_cols, int dst_step, float k) { int col = get_local_id(0); const int gX = get_group_id(0); const int gY = get_group_id(1); const int glx = get_global_id(0); const int gly = get_global_id(1); int dx_x_off = (dx_offset % dx_step) >> 2; int dx_y_off = dx_offset / dx_step; int dy_x_off = (dy_offset % dy_step) >> 2; int dy_y_off = dy_offset / dy_step; int dst_x_off = (dst_offset % dst_step) >> 2; int dst_y_off = dst_offset / dst_step; int dx_startX = gX * (THREADS-ksX+1) - anX + dx_x_off; int dx_startY = (gY << 1) - anY + dx_y_off; int dy_startX = gX * (THREADS-ksX+1) - anX + dy_x_off; int dy_startY = (gY << 1) - anY + dy_y_off; int dst_startX = gX * (THREADS-ksX+1) + dst_x_off; int dst_startY = (gY << 1) + dst_y_off; float dx_data[ksY+1],dy_data[ksY+1],data[3][ksY+1]; __local float temp[6][THREADS]; #ifdef BORDER_CONSTANT bool dx_con,dy_con; float dx_s,dy_s; for(int i=0; i < ksY+1; i++) { dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows; dx_s = Dx[(dx_startY+i)*(dx_step>>2)+(dx_startX+col)]; dx_data[i] = dx_con ? dx_s : 0.0; dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows; dy_s = Dy[(dy_startY+i)*(dy_step>>2)+(dy_startX+col)]; dy_data[i] = dy_con ? dy_s : 0.0; data[0][i] = dx_data[i] * dx_data[i]; data[1][i] = dx_data[i] * dy_data[i]; data[2][i] = dy_data[i] * dy_data[i]; } #else for(int i=0; i < ksY+1; i++) { int dx_selected_row; int dx_selected_col; dx_selected_row = ADDR_H(dx_startY+i, 0, dx_whole_rows); dx_selected_row = ADDR_B(dx_startY+i, dx_whole_rows, dx_selected_row); dx_selected_col = ADDR_L(dx_startX+col, 0, dx_whole_cols); dx_selected_col = ADDR_R(dx_startX+col, dx_whole_cols, dx_selected_col); dx_data[i] = Dx[dx_selected_row * (dx_step>>2) + dx_selected_col]; int dy_selected_row; int dy_selected_col; dy_selected_row = ADDR_H(dy_startY+i, 0, dy_whole_rows); dy_selected_row = ADDR_B(dy_startY+i, dy_whole_rows, dy_selected_row); dy_selected_col = ADDR_L(dy_startX+col, 0, dy_whole_cols); dy_selected_col = ADDR_R(dy_startX+col, dy_whole_cols, dy_selected_col); dy_data[i] = Dy[dy_selected_row * (dy_step>>2) + dy_selected_col]; data[0][i] = dx_data[i] * dx_data[i]; data[1][i] = dx_data[i] * dy_data[i]; data[2][i] = dy_data[i] * dy_data[i]; } #endif float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0; for(int i=1; i < ksY; i++) { sum0 += (data[0][i]); sum1 += (data[1][i]); sum2 += (data[2][i]); } float sum01,sum02,sum11,sum12,sum21,sum22; sum01 = sum0 + (data[0][0]); sum02 = sum0 + (data[0][ksY]); temp[0][col] = sum01; temp[1][col] = sum02; sum11 = sum1 + (data[1][0]); sum12 = sum1 + (data[1][ksY]); temp[2][col] = sum11; temp[3][col] = sum12; sum21 = sum2 + (data[2][0]); sum22 = sum2 + (data[2][ksY]); temp[4][col] = sum21; temp[5][col] = sum22; barrier(CLK_LOCAL_MEM_FENCE); if(col < (THREADS-(ksX-1))) { col += anX; int posX = dst_startX - dst_x_off + col - anX; int posY = (gly << 1); int till = (ksX + 1)%2; float tmp_sum[6]={ 0.0, 0.0 , 0.0, 0.0, 0.0, 0.0 }; for(int k=0; k<6; k++) for(int i=-anX; i<=anX - till; i++) { tmp_sum[k] += temp[k][col+i]; } if(posX < dst_cols && (posY) < dst_rows) { float a = tmp_sum[0] * 0.5f; float b = tmp_sum[2]; float c = tmp_sum[4] * 0.5f; dst[(dst_startY+0) * (dst_step>>2)+ dst_startX + col - anX] = (float)((a+c) - sqrt((a-c)*(a-c) + b*b)); } if(posX < dst_cols && (posY + 1) < dst_rows) { float a = tmp_sum[1] * 0.5f; float b = tmp_sum[3]; float c = tmp_sum[5] * 0.5f; dst[(dst_startY+1) * (dst_step>>2)+ dst_startX + col - anX] = (float)((a+c) - sqrt((a-c)*(a-c) + b*b)); } } }