/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Erping Pang, pang_er_ping@163.com // Xiaopeng Fu, fuxiaopeng2222@163.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_OPENCL using namespace cvtest; using namespace testing; using namespace std; using namespace cv; #define OCL_KMEANS_USE_INITIAL_LABELS 1 #define OCL_KMEANS_PP_CENTERS 2 PARAM_TEST_CASE(Kmeans, int, int, int) { int type; int K; int flags; Mat src ; ocl::oclMat d_src, d_dists; Mat labels, centers; ocl::oclMat d_labels, d_centers; virtual void SetUp() { K = GET_PARAM(0); type = GET_PARAM(1); flags = GET_PARAM(2); // MWIDTH=256, MHEIGHT=256. defined in utility.hpp Size size = Size(MWIDTH, MHEIGHT); src.create(size, type); int row_idx = 0; const int max_neighbour = MHEIGHT / K - 1; CV_Assert(K <= MWIDTH); for(int i = 0; i < K; i++ ) { Mat center_row_header = src.row(row_idx); center_row_header.setTo(0); int nchannel = center_row_header.channels(); for(int j = 0; j < nchannel; j++) center_row_header.at(0, i*nchannel+j) = 50000.0; for(int j = 0; (j < max_neighbour) || (i == K-1 && j < max_neighbour + MHEIGHT%K); j ++) { Mat cur_row_header = src.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false); cur_row_header += tmpmat; } row_idx += 1 + max_neighbour; } } }; OCL_TEST_P(Kmeans, Mat){ if(flags & KMEANS_USE_INITIAL_LABELS) { // inital a given labels labels.create(src.rows, 1, CV_32S); int *label = labels.ptr(); for(int i = 0; i < src.rows; i++) label[i] = rng.uniform(0, K); d_labels.upload(labels); } d_src.upload(src); for(int j = 0; j < LOOP_TIMES; j++) { kmeans(src, K, labels, TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0), 1, flags, centers); ocl::kmeans(d_src, K, d_labels, TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0), 1, flags, d_centers); Mat dd_labels(d_labels); Mat dd_centers(d_centers); if(flags & KMEANS_USE_INITIAL_LABELS) { EXPECT_MAT_NEAR(labels, dd_labels, 0); EXPECT_MAT_NEAR(centers, dd_centers, 1e-3); } else { int row_idx = 0; for(int i = 0; i < K; i++) { // verify lables with ground truth resutls int label = labels.at(row_idx); int header_label = dd_labels.at(row_idx); for(int j2 = 0; (j2 < MHEIGHT/K)||(i == K-1 && j2 < MHEIGHT/K+MHEIGHT%K); j2++) { ASSERT_NEAR(labels.at(row_idx+j2), label, 0); ASSERT_NEAR(dd_labels.at(row_idx+j2), header_label, 0); } // verify centers float *center = centers.ptr(label); float *header_center = dd_centers.ptr(header_label); for(int t = 0; t < centers.cols; t++) ASSERT_NEAR(center[t], header_center[t], 1e-3); row_idx += MHEIGHT/K; } } } } INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine( Values(3, 5, 8), Values(CV_32FC1, CV_32FC2, CV_32FC4), Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/))); /////////////////////////////// DistanceToCenters ////////////////////////////////////////// CV_ENUM(DistType, NORM_L1, NORM_L2SQR) PARAM_TEST_CASE(distanceToCenters, DistType, bool) { int distType; bool useRoi; Mat src, centers, src_roi, centers_roi; ocl::oclMat ocl_src, ocl_centers, ocl_src_roi, ocl_centers_roi; virtual void SetUp() { distType = GET_PARAM(0); useRoi = GET_PARAM(1); } void random_roi() { Size roiSizeSrc = randomSize(1, MAX_VALUE); Size roiSizeCenters = randomSize(1, MAX_VALUE); roiSizeSrc.width = roiSizeCenters.width; Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(src, src_roi, roiSizeSrc, srcBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE); Border centersBorder = randomBorder(0, useRoi ? 500 : 0); randomSubMat(centers, centers_roi, roiSizeCenters, centersBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE); for (int i = 0; i < centers.rows; i++) centers.at(i, randomInt(0, centers.cols)) = (float)randomDouble(SHRT_MAX, INT_MAX); generateOclMat(ocl_src, ocl_src_roi, src, roiSizeSrc, srcBorder); generateOclMat(ocl_centers, ocl_centers_roi, centers, roiSizeCenters, centersBorder); } }; OCL_TEST_P(distanceToCenters, Accuracy) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); Mat labels, dists; ocl::distanceToCenters(ocl_src_roi, ocl_centers_roi, dists, labels, distType); EXPECT_EQ(dists.size(), labels.size()); Mat batch_dists; cv::batchDistance(src_roi, centers_roi, batch_dists, CV_32FC1, noArray(), distType); std::vector gold_dists_v; gold_dists_v.reserve(batch_dists.rows); for (int i = 0; i < batch_dists.rows; i++) { Mat r = batch_dists.row(i); double mVal; Point mLoc; minMaxLoc(r, &mVal, NULL, &mLoc, NULL); int ocl_label = labels.at(i, 0); EXPECT_EQ(mLoc.x, ocl_label); gold_dists_v.push_back(static_cast(mVal)); } double relative_error = cv::norm(Mat(gold_dists_v), dists, NORM_INF | NORM_RELATIVE); ASSERT_LE(relative_error, 1e-5); } } INSTANTIATE_TEST_CASE_P (OCL_ML, distanceToCenters, Combine(DistType::all(), Bool())); #endif