/* slasq1.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; /* Subroutine */ int slasq1_(integer *n, real *d__, real *e, real *work, integer *info) { /* System generated locals */ integer i__1, i__2; real r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; real eps; extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *) ; real scale; integer iinfo; real sigmn, sigmx; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slasq2_(integer *, real *, integer *); extern doublereal slamch_(char *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *), slascl_( char *, integer *, integer *, real *, real *, integer *, integer * , real *, integer *, integer *), slasrt_(char *, integer * , real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */ /* -- Laboratory and Beresford Parlett of the Univ. of California at -- */ /* -- Berkeley -- */ /* -- November 2008 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASQ1 computes the singular values of a real N-by-N bidiagonal */ /* matrix with diagonal D and off-diagonal E. The singular values */ /* are computed to high relative accuracy, in the absence of */ /* denormalization, underflow and overflow. The algorithm was first */ /* presented in */ /* "Accurate singular values and differential qd algorithms" by K. V. */ /* Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230, */ /* 1994, */ /* and the present implementation is described in "An implementation of */ /* the dqds Algorithm (Positive Case)", LAPACK Working Note. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of rows and columns in the matrix. N >= 0. */ /* D (input/output) REAL array, dimension (N) */ /* On entry, D contains the diagonal elements of the */ /* bidiagonal matrix whose SVD is desired. On normal exit, */ /* D contains the singular values in decreasing order. */ /* E (input/output) REAL array, dimension (N) */ /* On entry, elements E(1:N-1) contain the off-diagonal elements */ /* of the bidiagonal matrix whose SVD is desired. */ /* On exit, E is overwritten. */ /* WORK (workspace) REAL array, dimension (4*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: the algorithm failed */ /* = 1, a split was marked by a positive value in E */ /* = 2, current block of Z not diagonalized after 30*N */ /* iterations (in inner while loop) */ /* = 3, termination criterion of outer while loop not met */ /* (program created more than N unreduced blocks) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --e; --d__; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; i__1 = -(*info); xerbla_("SLASQ1", &i__1); return 0; } else if (*n == 0) { return 0; } else if (*n == 1) { d__[1] = dabs(d__[1]); return 0; } else if (*n == 2) { slas2_(&d__[1], &e[1], &d__[2], &sigmn, &sigmx); d__[1] = sigmx; d__[2] = sigmn; return 0; } /* Estimate the largest singular value. */ sigmx = 0.f; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = (r__1 = d__[i__], dabs(r__1)); /* Computing MAX */ r__2 = sigmx, r__3 = (r__1 = e[i__], dabs(r__1)); sigmx = dmax(r__2,r__3); /* L10: */ } d__[*n] = (r__1 = d__[*n], dabs(r__1)); /* Early return if SIGMX is zero (matrix is already diagonal). */ if (sigmx == 0.f) { slasrt_("D", n, &d__[1], &iinfo); return 0; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = sigmx, r__2 = d__[i__]; sigmx = dmax(r__1,r__2); /* L20: */ } /* Copy D and E into WORK (in the Z format) and scale (squaring the */ /* input data makes scaling by a power of the radix pointless). */ eps = slamch_("Precision"); safmin = slamch_("Safe minimum"); scale = sqrt(eps / safmin); scopy_(n, &d__[1], &c__1, &work[1], &c__2); i__1 = *n - 1; scopy_(&i__1, &e[1], &c__1, &work[2], &c__2); i__1 = (*n << 1) - 1; i__2 = (*n << 1) - 1; slascl_("G", &c__0, &c__0, &sigmx, &scale, &i__1, &c__1, &work[1], &i__2, &iinfo); /* Compute the q's and e's. */ i__1 = (*n << 1) - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing 2nd power */ r__1 = work[i__]; work[i__] = r__1 * r__1; /* L30: */ } work[*n * 2] = 0.f; slasq2_(n, &work[1], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = sqrt(work[i__]); /* L40: */ } slascl_("G", &c__0, &c__0, &scale, &sigmx, n, &c__1, &d__[1], n, & iinfo); } return 0; /* End of SLASQ1 */ } /* slasq1_ */