/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Matrix arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ... // // */ #include "precomp.hpp" namespace cv { #if CV_SSE2 enum { ARITHM_SIMD = CV_CPU_SSE2 }; template struct VBinOp8 { int operator()(const uchar* src1, const uchar* src2, uchar* dst, int len) const { int x = 0; for( ; x <= len - 32; x += 32 ) { __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 16)); r0 = op(r0,_mm_loadu_si128((const __m128i*)(src2 + x))); r1 = op(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 16))); _mm_storeu_si128((__m128i*)(dst + x), r0); _mm_storeu_si128((__m128i*)(dst + x + 16), r1); } for( ; x <= len - 8; x += 8 ) { __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x)); r0 = op(r0,_mm_loadl_epi64((const __m128i*)(src2 + x))); _mm_storel_epi64((__m128i*)(dst + x), r0); } return x; } Op8 op; }; template struct VBinOp16 { int operator()(const T* src1, const T* src2, T* dst, int len) const { int x = 0; for( ; x <= len - 16; x += 16 ) { __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x)); __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 8)); r0 = op(r0,_mm_loadu_si128((const __m128i*)(src2 + x))); r1 = op(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 8))); _mm_storeu_si128((__m128i*)(dst + x), r0); _mm_storeu_si128((__m128i*)(dst + x + 8), r1); } for( ; x <= len - 4; x += 4 ) { __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x)); r0 = op(r0,_mm_loadl_epi64((const __m128i*)(src2 + x))); _mm_storel_epi64((__m128i*)(dst + x), r0); } return x; } Op16 op; }; template struct VBinOp32f { int operator()(const float* src1, const float* src2, float* dst, int len) const { int x = 0; if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 ) for( ; x <= len - 8; x += 8 ) { __m128 r0 = _mm_load_ps(src1 + x); __m128 r1 = _mm_load_ps(src1 + x + 4); r0 = op(r0,_mm_load_ps(src2 + x)); r1 = op(r1,_mm_load_ps(src2 + x + 4)); _mm_store_ps(dst + x, r0); _mm_store_ps(dst + x + 4, r1); } else for( ; x <= len - 8; x += 8 ) { __m128 r0 = _mm_loadu_ps(src1 + x); __m128 r1 = _mm_loadu_ps(src1 + x + 4); r0 = op(r0,_mm_loadu_ps(src2 + x)); r1 = op(r1,_mm_loadu_ps(src2 + x + 4)); _mm_storeu_ps(dst + x, r0); _mm_storeu_ps(dst + x + 4, r1); } return x; } Op32f op; }; struct _VAdd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu8(a,b); }}; struct _VSub8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu8(a,b); }}; struct _VMin8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); }}; struct _VMax8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); }}; struct _VCmpGT8u { __m128i operator()(const __m128i& a, const __m128i& b) const { __m128i delta = _mm_set1_epi32(0x80808080); return _mm_cmpgt_epi8(_mm_xor_si128(a,delta),_mm_xor_si128(b,delta)); }}; struct _VCmpEQ8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_cmpeq_epi8(a,b); }}; struct _VAbsDiff8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_add_epi8(_mm_subs_epu8(a,b),_mm_subs_epu8(b,a)); } }; struct _VAdd16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(a,b); }}; struct _VSub16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,b); }}; struct _VMin16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); } }; struct _VMax16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(_mm_subs_epu16(a,b),b); } }; struct _VAbsDiff16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_add_epi16(_mm_subs_epu16(a,b),_mm_subs_epu16(b,a)); } }; struct _VAdd16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi16(a,b); }}; struct _VSub16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi16(a,b); }}; struct _VMin16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a,b); }}; struct _VMax16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a,b); }}; struct _VAbsDiff16s { __m128i operator()(const __m128i& a, const __m128i& b) const { __m128i M = _mm_max_epi16(a,b), m = _mm_min_epi16(a,b); return _mm_subs_epi16(M, m); } }; struct _VAdd32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_add_ps(a,b); }}; struct _VSub32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_sub_ps(a,b); }}; struct _VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }}; struct _VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }}; static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff }; struct _VAbsDiff32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask); } }; struct _VAnd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_and_si128(a,b); }}; struct _VOr8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_or_si128(a,b); }}; struct _VXor8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_xor_si128(a,b); }}; typedef VBinOp8<_VAdd8u> VAdd8u; typedef VBinOp8<_VSub8u> VSub8u; typedef VBinOp8<_VMin8u> VMin8u; typedef VBinOp8<_VMax8u> VMax8u; typedef VBinOp8<_VAbsDiff8u> VAbsDiff8u; typedef VBinOp8<_VCmpEQ8u> VCmpEQ8u; typedef VBinOp8<_VCmpGT8u> VCmpGT8u; typedef VBinOp16 VAdd16u; typedef VBinOp16 VSub16u; typedef VBinOp16 VMin16u; typedef VBinOp16 VMax16u; typedef VBinOp16 VAbsDiff16u; typedef VBinOp16 VAdd16s; typedef VBinOp16 VSub16s; typedef VBinOp16 VMin16s; typedef VBinOp16 VMax16s; typedef VBinOp16 VAbsDiff16s; typedef VBinOp32f<_VAdd32f> VAdd32f; typedef VBinOp32f<_VSub32f> VSub32f; typedef VBinOp32f<_VMin32f> VMin32f; typedef VBinOp32f<_VMax32f> VMax32f; typedef VBinOp32f<_VAbsDiff32f> VAbsDiff32f; typedef VBinOp8<_VAnd8u> VAnd8u; typedef VBinOp8<_VOr8u> VOr8u; typedef VBinOp8<_VXor8u> VXor8u; #else enum { ARITHM_SIMD = CV_CPU_NONE }; typedef NoVec VAdd8u; typedef NoVec VSub8u; typedef NoVec VMin8u; typedef NoVec VMax8u; typedef NoVec VAbsDiff8u; typedef NoVec VCmpEQ8u; typedef NoVec VCmpGT8u; typedef NoVec VAdd16u; typedef NoVec VSub16u; typedef NoVec VMin16u; typedef NoVec VMax16u; typedef NoVec VAbsDiff16u; typedef NoVec VAdd16s; typedef NoVec VSub16s; typedef NoVec VMin16s; typedef NoVec VMax16s; typedef NoVec VAbsDiff16s; typedef NoVec VAdd32f; typedef NoVec VSub32f; typedef NoVec VMin32f; typedef NoVec VMax32f; typedef NoVec VAbsDiff32f; typedef NoVec VAnd8u; typedef NoVec VOr8u; typedef NoVec VXor8u; #endif /****************************************************************************************\ * logical operations * \****************************************************************************************/ template struct AndOp { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a & b; } }; template struct OrOp { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a | b; } }; template struct XorOp { typedef T type1; typedef T type2; typedef T rtype; T operator()( T a, T b ) const { return a ^ b; } }; template static void bitwiseOp_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat ) { OPB opb; OPI opi; OPV opv; const uchar* src1 = srcmat1.data; const uchar* src2 = srcmat2.data; uchar* dst = dstmat.data; size_t step1 = srcmat1.step, step2 = srcmat2.step, step = dstmat.step; Size size = getContinuousSize( srcmat1, srcmat2, dstmat, (int)srcmat1.elemSize() ); bool useSIMD = checkHardwareSupport(ARITHM_SIMD); for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i = useSIMD ? opv(src1, src2, dst, size.width) : 0; if( (((size_t)src1 | (size_t)src2 | (size_t)dst) & 3) == 0 ) { for( ; i <= size.width - 16; i += 16 ) { int t0 = opi(((const int*)(src1+i))[0], ((const int*)(src2+i))[0]); int t1 = opi(((const int*)(src1+i))[1], ((const int*)(src2+i))[1]); ((int*)(dst+i))[0] = t0; ((int*)(dst+i))[1] = t1; t0 = opi(((const int*)(src1+i))[2], ((const int*)(src2+i))[2]); t1 = opi(((const int*)(src1+i))[3], ((const int*)(src2+i))[3]); ((int*)(dst+i))[2] = t0; ((int*)(dst+i))[3] = t1; } for( ; i <= size.width - 4; i += 4 ) { int t = opi(*(const int*)(src1+i), *(const int*)(src2+i)); *(int*)(dst+i) = t; } } for( ; i < size.width; i++ ) dst[i] = opb(src1[i], src2[i]); } } template static void bitwiseSOp_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar ) { OPB opb; OPI opi; OPV opv; const uchar* src0 = srcmat.data; uchar* dst0 = dstmat.data; size_t step1 = srcmat.step, step = dstmat.step; Size size = getContinuousSize( srcmat, dstmat, (int)srcmat.elemSize() ); const int delta = 96; uchar scalar[delta]; scalarToRawData(_scalar, scalar, srcmat.type(), (int)(delta/srcmat.elemSize1()) ); bool useSIMD = checkHardwareSupport(ARITHM_SIMD); for( ; size.height--; src0 += step1, dst0 += step ) { const uchar* src = (const uchar*)src0; uchar* dst = dst0; int i, len = size.width; if( (((size_t)src|(size_t)dst) & 3) == 0 ) { while( (len -= delta) >= 0 ) { i = useSIMD ? opv(src, scalar, dst, delta) : 0; for( ; i < delta; i += 16 ) { int t0 = opi(((const int*)(src+i))[0], ((const int*)(scalar+i))[0]); int t1 = opi(((const int*)(src+i))[1], ((const int*)(scalar+i))[1]); ((int*)(dst+i))[0] = t0; ((int*)(dst+i))[1] = t1; t0 = opi(((const int*)(src+i))[2], ((const int*)(scalar+i))[2]); t1 = opi(((const int*)(src+i))[3], ((const int*)(scalar+i))[3]); ((int*)(dst+i))[2] = t0; ((int*)(dst+i))[3] = t1; } src += delta; dst += delta; } } else { while( (len -= delta) >= 0 ) { for( i = 0; i < delta; i += 4 ) { uchar t0 = opb(src[i], scalar[i]); uchar t1 = opb(src[i+1], scalar[i+1]); dst[i] = t0; dst[i+1] = t1; t0 = opb(src[i+2], scalar[i+2]); t1 = opb(src[i+3], scalar[i+3]); dst[i+2] = t0; dst[i+3] = t1; } src += delta; dst += delta; } } for( len += delta, i = 0; i < len; i++ ) dst[i] = opb(src[i],scalar[i]); } } static void binaryMaskOp( const Mat& src1, const Mat& src2, Mat& dst, const Mat& mask, BinaryFunc func ) { CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() && func != 0 ); dst.create( src1.size(), src1.type() ); if( !mask.data ) func(src1, src2, dst); else { AutoBuffer buf; size_t esz = dst.elemSize(), buf_step = dst.cols*esz; CopyMaskFunc copym_func = getCopyMaskFunc((int)esz); int y, dy; CV_Assert(mask.type() == CV_8UC1 && mask.size() == dst.size()); dy = std::min(std::max((int)(CV_MAX_LOCAL_SIZE/buf_step), 1), dst.rows); buf.allocate( buf_step*dy ); for( y = 0; y < dst.rows; y += dy ) { dy = std::min(dy, dst.rows - y); Mat dstpart = dst.rowRange(y, y + dy); Mat temp(dy, dst.cols, dst.type(), (uchar*)buf ); func( src1.rowRange(y, y + dy), src2.rowRange(y, y + dy), temp ); copym_func( temp, dstpart, mask.rowRange(y, y + dy) ); } } } static void binarySMaskOp( const Mat& src1, const Scalar& s, Mat& dst, const Mat& mask, BinarySFuncCn func ) { CV_Assert( func != 0 ); dst.create( src1.size(), src1.type() ); if( !mask.data ) func(src1, dst, s); else { AutoBuffer buf; size_t esz = dst.elemSize(), buf_step = dst.cols*esz; CopyMaskFunc copym_func = getCopyMaskFunc((int)esz); int y, dy; CV_Assert(mask.type() == CV_8UC1 && mask.size() == dst.size()); dy = std::min(std::max((int)(CV_MAX_LOCAL_SIZE/buf_step), 1), dst.rows); buf.allocate( buf_step*dy ); for( y = 0; y < dst.rows; y += dy ) { dy = std::min(dy, dst.rows - y); Mat dstpart = dst.rowRange(y, y + dy); Mat temp(dy, dst.cols, dst.type(), (uchar*)buf); func( src1.rowRange(y, y + dy), temp, s ); copym_func( temp, dstpart, mask.rowRange(y, y + dy) ); } } } void bitwise_and(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { binaryMaskOp(a, b, c, mask, bitwiseOp_, AndOp, VAnd8u>); } void bitwise_or(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { binaryMaskOp(a, b, c, mask, bitwiseOp_, OrOp, VOr8u>); } void bitwise_xor(const Mat& a, const Mat& b, Mat& c, const Mat& mask) { binaryMaskOp(a, b, c, mask, bitwiseOp_, XorOp, VXor8u>); } void bitwise_and(const Mat& a, const Scalar& s, Mat& c, const Mat& mask) { binarySMaskOp(a, s, c, mask, bitwiseSOp_, AndOp, VAnd8u>); } void bitwise_or(const Mat& a, const Scalar& s, Mat& c, const Mat& mask) { binarySMaskOp(a, s, c, mask, bitwiseSOp_, OrOp, VOr8u>); } void bitwise_xor(const Mat& a, const Scalar& s, Mat& c, const Mat& mask) { binarySMaskOp(a, s, c, mask, bitwiseSOp_, XorOp, VXor8u>); } void bitwise_not(const Mat& src, Mat& dst) { const uchar* sptr = src.data; dst.create( src.size(), src.type() ); uchar* dptr = dst.data; Size size = getContinuousSize( src, dst, (int)src.elemSize() ); for( ; size.height--; sptr += src.step, dptr += dst.step ) { int i = 0; if( (((size_t)sptr | (size_t)dptr) & 3) == 0 ) { for( ; i <= size.width - 16; i += 16 ) { int t0 = ~((const int*)(sptr+i))[0]; int t1 = ~((const int*)(sptr+i))[1]; ((int*)(dptr+i))[0] = t0; ((int*)(dptr+i))[1] = t1; t0 = ~((const int*)(sptr+i))[2]; t1 = ~((const int*)(sptr+i))[3]; ((int*)(dptr+i))[2] = t0; ((int*)(dptr+i))[3] = t1; } for( ; i <= size.width - 4; i += 4 ) *(int*)(dptr+i) = ~*(const int*)(sptr+i); } for( ; i < size.width; i++ ) { dptr[i] = (uchar)(~sptr[i]); } } } /****************************************************************************************\ * add/subtract * \****************************************************************************************/ template<> inline uchar OpAdd::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a + b); } template<> inline uchar OpSub::operator ()(uchar a, uchar b) const { return CV_FAST_CAST_8U(a - b); } static BinaryFunc addTab[] = { binaryOpC1_,VAdd8u>, 0, binaryOpC1_,VAdd16u>, binaryOpC1_,VAdd16s>, binaryOpC1_,NoVec>, binaryOpC1_,VAdd32f>, binaryOpC1_,NoVec>, 0 }; static BinaryFunc subTab[] = { binaryOpC1_,VSub8u>, 0, binaryOpC1_,VSub16u>, binaryOpC1_,VSub16s>, binaryOpC1_,NoVec>, binaryOpC1_,VSub32f>, binaryOpC1_,NoVec>, 0 }; void add( const Mat& src1, const Mat& src2, Mat& dst ) { Size size = src1.size(); int type = src1.type(); BinaryFunc func = addTab[CV_MAT_DEPTH(type)]; CV_Assert( size == src2.size() && type == src2.type() && func != 0 ); dst.create( size, type ); func(src1, src2, dst); } void subtract( const Mat& src1, const Mat& src2, Mat& dst ) { Size size = src1.size(); int type = src1.type(); BinaryFunc func = subTab[CV_MAT_DEPTH(type)]; CV_Assert( size == src2.size() && type == src2.type() && func != 0 ); dst.create( size, type ); func(src1, src2, dst); } void subtract(const Mat& a, const Scalar& s, Mat& c, const Mat& mask) { add(a, -s, c, mask); } void add(const Mat& src1, const Mat& src2, Mat& dst, const Mat& mask) { binaryMaskOp(src1, src2, dst, mask, addTab[src1.depth()] ); } void subtract(const Mat& src1, const Mat& src2, Mat& dst, const Mat& mask) { binaryMaskOp(src1, src2, dst, mask, subTab[src1.depth()] ); } void add(const Mat& src1, const Scalar& s, Mat& dst, const Mat& mask) { static BinarySFuncCn addSTab[] = { binarySOpCn_ >, 0, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, 0 }; int depth = src1.depth(); binarySMaskOp(src1, s, dst, mask, addSTab[depth]); } void subtract(const Scalar& s, const Mat& src1, Mat& dst, const Mat& mask) { static BinarySFuncCn rsubSTab[] = { binarySOpCn_ >, 0, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, 0 }; int depth = src1.depth(); binarySMaskOp(src1, s, dst, mask, rsubSTab[depth]); } /****************************************************************************************\ * multiply/divide * \****************************************************************************************/ template static void mul_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat, double _scale ) { const T* src1 = (const T*)srcmat1.data; const T* src2 = (const T*)srcmat2.data; T* dst = (T*)dstmat.data; size_t step1 = srcmat1.step/sizeof(src1[0]); size_t step2 = srcmat2.step/sizeof(src2[0]); size_t step = dstmat.step/sizeof(dst[0]); Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() ); if( fabs(_scale - 1.) < DBL_EPSILON ) { for( ; size.height--; src1+=step1, src2+=step2, dst+=step ) { int i; for( i = 0; i <= size.width - 4; i += 4 ) { T t0 = saturate_cast(src1[i] * src2[i]); T t1 = saturate_cast(src1[i+1] * src2[i+1]); dst[i] = t0; dst[i+1] = t1; t0 = saturate_cast(src1[i+2] * src2[i+2]); t1 = saturate_cast(src1[i+3] * src2[i+3]); dst[i+2] = t0; dst[i+3] = t1; } for( ; i < size.width; i++ ) dst[i] = saturate_cast(src1[i] * src2[i]); } } else { WT scale = (WT)_scale; for( ; size.height--; src1+=step1, src2+=step2, dst+=step ) { int i; for( i = 0; i <= size.width - 4; i += 4 ) { T t0 = saturate_cast(scale*(WT)src1[i]*src2[i]); T t1 = saturate_cast(scale*(WT)src1[i+1]*src2[i+1]); dst[i] = t0; dst[i+1] = t1; t0 = saturate_cast(scale*(WT)src1[i+2]*src2[i+2]); t1 = saturate_cast(scale*(WT)src1[i+3]*src2[i+3]); dst[i+2] = t0; dst[i+3] = t1; } for( ; i < size.width; i++ ) dst[i] = saturate_cast(scale*(WT)src1[i]*src2[i]); } } } typedef void (*MulDivFunc)( const Mat& src1, const Mat& src2, Mat& dst, double scale ); void multiply(const Mat& src1, const Mat& src2, Mat& dst, double scale) { static MulDivFunc tab[] = { mul_, 0, mul_, mul_, mul_, mul_, mul_, 0 }; MulDivFunc func = tab[src1.depth()]; CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() && func != 0 ); dst.create( src1.size(), src1.type() ); func( src1, src2, dst, scale ); } template static void div_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat, double scale ) { const T* src1 = (const T*)srcmat1.data; const T* src2 = (const T*)srcmat2.data; T* dst = (T*)dstmat.data; size_t step1 = srcmat1.step/sizeof(src1[0]); size_t step2 = srcmat2.step/sizeof(src2[0]); size_t step = dstmat.step/sizeof(dst[0]); Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() ); for( ; size.height--; src1+=step1, src2+=step2, dst+=step ) { int i = 0; for( ; i <= size.width - 4; i += 4 ) { if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 ) { double a = (double)src2[i] * src2[i+1]; double b = (double)src2[i+2] * src2[i+3]; double d = scale/(a * b); b *= d; a *= d; T z0 = saturate_cast(src2[i+1] * src1[i] * b); T z1 = saturate_cast(src2[i] * src1[i+1] * b); T z2 = saturate_cast(src2[i+3] * src1[i+2] * a); T z3 = saturate_cast(src2[i+2] * src1[i+3] * a); dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } else { T z0 = src2[i] != 0 ? saturate_cast(src1[i]*scale/src2[i]) : 0; T z1 = src2[i+1] != 0 ? saturate_cast(src1[i+1]*scale/src2[i+1]) : 0; T z2 = src2[i+2] != 0 ? saturate_cast(src1[i+2]*scale/src2[i+2]) : 0; T z3 = src2[i+3] != 0 ? saturate_cast(src1[i+3]*scale/src2[i+3]) : 0; dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } } for( ; i < size.width; i++ ) dst[i] = src2[i] != 0 ? saturate_cast(src1[i]*scale/src2[i]) : 0; } } void divide(const Mat& src1, const Mat& src2, Mat& dst, double scale) { static MulDivFunc tab[] = { div_, 0, div_, div_, div_, div_, div_, 0 }; MulDivFunc func = tab[src1.depth()]; CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() && func != 0 ); dst.create( src1.size(), src1.type() ); func( src1, src2, dst, scale ); } template static void recip_( double scale, const Mat& srcmat2, Mat& dstmat ) { const T* src2 = (const T*)srcmat2.data; T* dst = (T*)dstmat.data; size_t step2 = srcmat2.step/sizeof(src2[0]); size_t step = dstmat.step/sizeof(dst[0]); Size size = getContinuousSize( srcmat2, dstmat, dstmat.channels() ); for( ; size.height--; src2+=step2, dst+=step ) { int i = 0; for( ; i <= size.width - 4; i += 4 ) { if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 ) { double a = (double)src2[i] * src2[i+1]; double b = (double)src2[i+2] * src2[i+3]; double d = scale/(a * b); b *= d; a *= d; T z0 = saturate_cast(src2[i+1] * b); T z1 = saturate_cast(src2[i] * b); T z2 = saturate_cast(src2[i+3] * a); T z3 = saturate_cast(src2[i+2] * a); dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } else { T z0 = src2[i] != 0 ? saturate_cast(scale/src2[i]) : 0; T z1 = src2[i+1] != 0 ? saturate_cast(scale/src2[i+1]) : 0; T z2 = src2[i+2] != 0 ? saturate_cast(scale/src2[i+2]) : 0; T z3 = src2[i+3] != 0 ? saturate_cast(scale/src2[i+3]) : 0; dst[i] = z0; dst[i+1] = z1; dst[i+2] = z2; dst[i+3] = z3; } } for( ; i < size.width; i++ ) dst[i] = src2[i] != 0 ? saturate_cast(scale/src2[i]) : 0; } } typedef void (*RecipFunc)( double scale, const Mat& src, Mat& dst ); void divide(double scale, const Mat& src, Mat& dst) { static RecipFunc tab[] = { recip_, 0, recip_, recip_, recip_, recip_, recip_, 0 }; RecipFunc func = tab[src.depth()]; CV_Assert( func != 0 ); dst.create( src.size(), src.type() ); func( scale, src, dst ); } /****************************************************************************************\ * addWeighted * \****************************************************************************************/ template static void addWeighted_( const Mat& srcmat1, double _alpha, const Mat& srcmat2, double _beta, double _gamma, Mat& dstmat ) { const T* src1 = (const T*)srcmat1.data; const T* src2 = (const T*)srcmat2.data; T* dst = (T*)dstmat.data; size_t step1 = srcmat1.step/sizeof(src1[0]); size_t step2 = srcmat2.step/sizeof(src2[0]); size_t step = dstmat.step/sizeof(dst[0]); Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() ); WT alpha = (WT)_alpha, beta = (WT)_beta, gamma = (WT)_gamma; for( ; size.height--; src1+=step1, src2+=step2, dst+=step ) { int i = 0; for( ; i <= size.width - 4; i += 4 ) { T t0 = saturate_cast(src1[i]*alpha + src2[i]*beta + gamma); T t1 = saturate_cast(src1[i+1]*alpha + src2[i+1]*beta + gamma); dst[i] = t0; dst[i+1] = t1; t0 = saturate_cast(src1[i+2]*alpha + src2[i+2]*beta + gamma); t1 = saturate_cast(src1[i+3]*alpha + src2[i+3]*beta + gamma); dst[i+2] = t0; dst[i+3] = t1; } for( ; i < size.width; i++ ) dst[i] = saturate_cast(src1[i]*alpha + src2[i]*beta + gamma); } } static void addWeighted8u( const Mat& srcmat1, double alpha, const Mat& srcmat2, double beta, double gamma, Mat& dstmat ) { const int shift = 14; if( srcmat1.rows*srcmat1.cols*srcmat1.channels() <= 256 || fabs(alpha) > 256 || fabs(beta) > 256 || fabs(gamma) > 256*256 ) { addWeighted_(srcmat1, alpha, srcmat2, beta, gamma, dstmat); return; } const uchar* src1 = srcmat1.data; const uchar* src2 = srcmat2.data; uchar* dst = dstmat.data; size_t step1 = srcmat1.step; size_t step2 = srcmat2.step; size_t step = dstmat.step; Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() ); int tab1[256], tab2[256]; double t = 0; int j, t0, t1, t2, t3; alpha *= 1 << shift; gamma = gamma*(1 << shift) + (1 << (shift - 1)); beta *= 1 << shift; for( j = 0; j < 256; j++ ) { tab1[j] = cvRound(t); tab2[j] = cvRound(gamma); t += alpha; gamma += beta; } t0 = (tab1[0] + tab2[0]) >> shift; t1 = (tab1[0] + tab2[255]) >> shift; t2 = (tab1[255] + tab2[0]) >> shift; t3 = (tab1[255] + tab2[255]) >> shift; if( (unsigned)(t0+256) < 768 && (unsigned)(t1+256) < 768 && (unsigned)(t2+256) < 768 && (unsigned)(t3+256) < 768 ) { // use faster table-based convertion back to 8u for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i; for( i = 0; i <= size.width - 4; i += 4 ) { t0 = CV_FAST_CAST_8U((tab1[src1[i]] + tab2[src2[i]]) >> shift); t1 = CV_FAST_CAST_8U((tab1[src1[i+1]] + tab2[src2[i+1]]) >> shift); dst[i] = (uchar)t0; dst[i+1] = (uchar)t1; t0 = CV_FAST_CAST_8U((tab1[src1[i+2]] + tab2[src2[i+2]]) >> shift); t1 = CV_FAST_CAST_8U((tab1[src1[i+3]] + tab2[src2[i+3]]) >> shift); dst[i+2] = (uchar)t0; dst[i+3] = (uchar)t1; } for( ; i < size.width; i++ ) { t0 = CV_FAST_CAST_8U((tab1[src1[i]] + tab2[src2[i]]) >> shift); dst[i] = (uchar)t0; } } } else { // use universal macro for convertion back to 8u for( ; size.height--; src1 += step1, src2 += step2, dst += step ) { int i; for( i = 0; i <= size.width - 4; i += 4 ) { t0 = (tab1[src1[i]] + tab2[src2[i]]) >> shift; t1 = (tab1[src1[i+1]] + tab2[src2[i+1]]) >> shift; dst[i] = CV_CAST_8U( t0 ); dst[i+1] = CV_CAST_8U( t1 ); t0 = (tab1[src1[i+2]] + tab2[src2[i+2]]) >> shift; t1 = (tab1[src1[i+3]] + tab2[src2[i+3]]) >> shift; dst[i+2] = CV_CAST_8U( t0 ); dst[i+3] = CV_CAST_8U( t1 ); } for( ; i < size.width; i++ ) { t0 = (tab1[src1[i]] + tab2[src2[i]]) >> shift; dst[i] = CV_CAST_8U( t0 ); } } } } typedef void (*AddWeightedFunc)( const Mat& src1, double alpha, const Mat& src2, double beta, double gamma, Mat& dst ); void addWeighted( const Mat& src1, double alpha, const Mat& src2, double beta, double gamma, Mat& dst ) { static AddWeightedFunc tab[]= { addWeighted8u, 0, addWeighted_, addWeighted_, addWeighted_, addWeighted_, addWeighted_, 0 }; AddWeightedFunc func = tab[src1.depth()]; CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() && func != 0 ); dst.create( src1.size(), src1.type() ); func( src1, alpha, src2, beta, gamma, dst ); } /****************************************************************************************\ * absdiff * \****************************************************************************************/ template struct OpAbsDiff { typedef T type1; typedef T type2; typedef T rtype; T operator()(T a, T b) { return (T)std::abs(a - b); } }; template<> inline short OpAbsDiff::operator ()(short a, short b) { return saturate_cast(std::abs(a - b)); } template struct OpAbsDiffS { typedef T type1; typedef WT type2; typedef T rtype; T operator()(T a, WT b) { return saturate_cast(std::abs(a - b)); } }; void absdiff( const Mat& src1, const Mat& src2, Mat& dst ) { static BinaryFunc tab[] = { binaryOpC1_,VAbsDiff8u>, 0, binaryOpC1_,VAbsDiff16u>, binaryOpC1_,VAbsDiff16s>, binaryOpC1_,NoVec>, binaryOpC1_,VAbsDiff32f>, binaryOpC1_,NoVec>, 0 }; dst.create(src1.size(), src1.type()); BinaryFunc func = tab[src1.depth()]; CV_Assert(src1.size() == src2.size() && src1.type() == src2.type() && func != 0); func( src1, src2, dst ); } void absdiff( const Mat& src1, const Scalar& s, Mat& dst ) { static BinarySFuncCn tab[] = { binarySOpCn_ >, 0, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, binarySOpCn_ >, 0 }; dst.create(src1.size(), src1.type()); BinarySFuncCn func = tab[src1.depth()]; CV_Assert(src1.channels() <= 4 && func != 0); func( src1, dst, s ); } /****************************************************************************************\ * inRange[S] * \****************************************************************************************/ template struct InRangeC1 { typedef T xtype; typedef WT btype; uchar operator()(xtype x, btype a, btype b) const { return (uchar)-(a <= x && x < b); } }; template struct InRangeC2 { typedef Vec xtype; typedef Vec btype; uchar operator()(const xtype& x, const btype& a, const btype& b) const { return (uchar)-(a[0] <= x[0] && x[0] < b[0] && a[1] <= x[1] && x[1] < b[1]); } }; template struct InRangeC3 { typedef Vec xtype; typedef Vec btype; uchar operator()(const xtype& x, const btype& a, const btype& b) const { return (uchar)-(a[0] <= x[0] && x[0] < b[0] && a[1] <= x[1] && x[1] < b[1] && a[2] <= x[2] && x[2] < b[2]); } }; template struct InRangeC4 { typedef Vec xtype; typedef Vec btype; uchar operator()(const xtype& x, const btype& a, const btype& b) const { return (uchar)-(a[0] <= x[0] && x[0] < b[0] && a[1] <= x[1] && x[1] < b[1] && a[2] <= x[2] && x[2] < b[2] && a[3] <= x[3] && x[3] < b[3]); } }; template static void inRange_( const Mat& srcmat1, const Mat& srcmat2, const Mat& srcmat3, Mat& dstmat ) { Op op; uchar* dst = dstmat.data; size_t dstep = dstmat.step; Size size = getContinuousSize( srcmat1, srcmat2, srcmat3, dstmat ); for( int y = 0; y < size.height; y++, dst += dstep ) { const typename Op::xtype* src1 = (const typename Op::xtype*)(srcmat1.data + srcmat1.step*y); const typename Op::xtype* src2 = (const typename Op::xtype*)(srcmat2.data + srcmat2.step*y); const typename Op::xtype* src3 = (const typename Op::xtype*)(srcmat3.data + srcmat3.step*y); for( int x = 0; x < size.width; x++ ) dst[x] = op( src1[x], src2[x], src3[x] ); } } template static void inRangeS_( const Mat& srcmat1, const Scalar& _a, const Scalar& _b, Mat& dstmat ) { Op op; typedef typename Op::btype WT; typedef typename DataType::channel_type WT1; WT a, b; uchar* dst = dstmat.data; size_t dstep = dstmat.step; Size size = getContinuousSize( srcmat1, dstmat ); int cn = srcmat1.channels(); _a.convertTo((WT1*)&a, cn); _b.convertTo((WT1*)&b, cn); for( int y = 0; y < size.height; y++, dst += dstep ) { const typename Op::xtype* src1 = (const typename Op::xtype*)(srcmat1.data + srcmat1.step*y); for( int x = 0; x < size.width; x++ ) dst[x] = op( src1[x], a, b ); } } typedef void (*InRangeFunc)( const Mat& src1, const Mat& src2, const Mat& src3, Mat& dst ); typedef void (*InRangeSFunc)( const Mat& src1, const Scalar& a, const Scalar& b, Mat& dst ); void inRange(const Mat& src, const Mat& lowerb, const Mat& upperb, Mat& dst) { static InRangeFunc tab[] = { inRange_ >, 0, inRange_ >, inRange_ >, inRange_ >, inRange_ >, inRange_ >, 0, inRange_ >, 0, inRange_ >, inRange_ >, inRange_ >, inRange_ >, inRange_ >, 0, inRange_ >, 0, inRange_ >, inRange_ >, inRange_ >, inRange_ >, inRange_ >, 0, inRange_ >, 0, inRange_ >, inRange_ >, inRange_ >, inRange_ >, inRange_ >, 0 }; CV_Assert( src.size() == lowerb.size() && src.size() == upperb.size() && src.type() == lowerb.type() && src.type() == upperb.type() && src.channels() <= 4 ); InRangeFunc func = tab[src.type()]; CV_Assert( func != 0 ); dst.create(src.size(), CV_8U); func( src, lowerb, upperb, dst ); } void inRange(const Mat& src, const Scalar& lowerb, const Scalar& upperb, Mat& dst) { static InRangeSFunc tab[] = { inRangeS_ >, 0, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, 0, inRangeS_ >, 0, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, 0, inRangeS_ >, 0, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, 0, inRangeS_ >, 0, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, inRangeS_ >, 0 }; CV_Assert( src.channels() <= 4 ); InRangeSFunc func = tab[src.type()]; CV_Assert( func != 0 ); dst.create(src.size(), CV_8U); func( src, lowerb, upperb, dst ); } /****************************************************************************************\ * compare * \****************************************************************************************/ template struct CmpEQ { typedef T type1; typedef WT type2; typedef uchar rtype; uchar operator()(T a, WT b) const { return (uchar)-(a == b); } }; template struct CmpGT { typedef T type1; typedef WT type2; typedef uchar rtype; uchar operator()(T a, WT b) const { return (uchar)-(a > b); } }; template struct CmpGE { typedef T type1; typedef WT type2; typedef uchar rtype; uchar operator()(T a, WT b) const { return (uchar)-(a >= b); } }; void compare( const Mat& src1, const Mat& src2, Mat& dst, int cmpOp ) { static BinaryFunc tab[][8] = { {binaryOpC1_,VCmpGT8u>, 0, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, 0}, {binaryOpC1_,VCmpEQ8u>, 0, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, // same function as for ushort's binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, binaryOpC1_,NoVec>, 0}, }; dst.create(src1.rows, src1.cols, CV_8U); CV_Assert(src1.size() == src2.size() && src1.type() == src2.type() && src1.channels() == 1); int depth = src1.depth(); const Mat *psrc1 = &src1, *psrc2 = &src2; bool invflag = false; switch( cmpOp ) { case CMP_GT: case CMP_EQ: break; case CMP_GE: std::swap( psrc1, psrc2 ); invflag = true; break; case CMP_LT: std::swap( psrc1, psrc2 ); break; case CMP_LE: invflag = true; break; case CMP_NE: cmpOp = CMP_EQ; invflag = true; break; default: CV_Error(CV_StsBadArg, "Unknown comparison method"); } BinaryFunc func = tab[cmpOp == CMP_EQ][depth]; CV_Assert( func != 0 ); func( *psrc1, *psrc2, dst ); if( invflag ) bitwise_not(dst, dst); } void compare( const Mat& src1, double value, Mat& dst, int cmpOp ) { static BinarySFuncC1 tab[][8] = { {binarySOpC1_ >, 0, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, 0}, {binarySOpC1_ >, 0, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, 0}, {binarySOpC1_ >, 0, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, 0}, }; dst.create(src1.rows, src1.cols, CV_8U); CV_Assert(src1.channels() == 1); int depth = src1.depth(); bool invflag = false; switch( cmpOp ) { case CMP_GT: case CMP_EQ: case CMP_GE: break; case CMP_LT: invflag = true; cmpOp = CMP_GE; break; case CMP_LE: invflag = true; cmpOp = CMP_GT; break; case CMP_NE: invflag = true; cmpOp = CMP_EQ; break; default: CV_Error(CV_StsBadArg, "Unknown comparison method"); } BinarySFuncC1 func = tab[cmpOp == CMP_EQ ? 0 : cmpOp == CMP_GT ? 1 : 2][depth]; CV_Assert( func != 0 ); func( src1, dst, value ); if( invflag ) bitwise_not(dst, dst); } /****************************************************************************************\ * min/max * \****************************************************************************************/ template struct MinOp { typedef T type1; typedef T type2; typedef T rtype; T operator ()(T a, T b) const { return std::min(a, b); } }; template struct MaxOp { typedef T type1; typedef T type2; typedef T rtype; T operator ()(T a, T b) const { return std::max(a, b); } }; template<> inline uchar MinOp::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); } template<> inline uchar MaxOp::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); } void min( const Mat& src1, const Mat& src2, Mat& dst ) { static BinaryFunc tab[] = { binaryOpC1_,VMin8u>, 0, binaryOpC1_,VMin16u>, binaryOpC1_,VMin16s>, binaryOpC1_,NoVec>, binaryOpC1_,VMin32f>, binaryOpC1_,NoVec>, 0 }; BinaryFunc func = tab[src1.depth()]; CV_Assert(src1.size() == src2.size() && src1.type() == src2.type() && func != 0); dst.create(src1.size(), src1.type()); return func( src1, src2, dst ); } void max( const Mat& src1, const Mat& src2, Mat& dst ) { static BinaryFunc tab[] = { binaryOpC1_,VMax8u>, 0, binaryOpC1_,VMax16u>, binaryOpC1_,VMax16s>, binaryOpC1_,NoVec>, binaryOpC1_,VMax32f>, binaryOpC1_,NoVec>, 0 }; BinaryFunc func = tab[src1.depth()]; CV_Assert(src1.size() == src2.size() && src1.type() == src2.type() && func != 0); dst.create(src1.size(), src1.type()); return func( src1, src2, dst ); } void min( const Mat& src1, double value, Mat& dst ) { static BinarySFuncC1 tab[] = { binarySOpC1_ >, 0, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, 0 }; BinarySFuncC1 func = tab[src1.depth()]; CV_Assert(func != 0); dst.create(src1.size(), src1.type()); return func( src1, dst, value ); } void max( const Mat& src1, double value, Mat& dst ) { static BinarySFuncC1 tab[] = { binarySOpC1_ >, 0, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, binarySOpC1_ >, 0 }; BinarySFuncC1 func = tab[src1.depth()]; CV_Assert(func != 0); dst.create(src1.size(), src1.type()); return func( src1, dst, value ); } } /****************************************************************************************\ * Earlier API: cvAdd etc. * \****************************************************************************************/ CV_IMPL void cvNot( const CvArr* srcarr, CvArr* dstarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::bitwise_not( src, dst ); } CV_IMPL void cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_and( src1, src2, dst, mask ); } CV_IMPL void cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_or( src1, src2, dst, mask ); } CV_IMPL void cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_xor( src1, src2, dst, mask ); } CV_IMPL void cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_and( src, s, dst, mask ); } CV_IMPL void cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_or( src, s, dst, mask ); } CV_IMPL void cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::bitwise_xor( src, s, dst, mask ); } CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::add( src1, src2, dst, mask ); } CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::subtract( src1, src2, dst, mask ); } CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::add( src1, value, dst, mask ); } CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::subtract( value, src1, dst, mask ); } CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, double scale ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::multiply( src1, src2, dst, scale ); } CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, double scale ) { cv::Mat src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr), mask; CV_Assert( src2.size() == dst.size() && src2.type() == dst.type() ); if( srcarr1 ) cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale ); else cv::divide( scale, src2, dst ); } CV_IMPL void cvAddWeighted( const CvArr* srcarr1, double alpha, const CvArr* srcarr2, double beta, double gamma, CvArr* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::addWeighted( src1, alpha, src2, beta, gamma, dst ); } CV_IMPL void cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::absdiff( src1, scalar, dst ); } CV_IMPL void cvInRange( const void* srcarr1, const void* srcarr2, const void* srcarr3, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && dst.type() == CV_8U ); cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst ); } CV_IMPL void cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && dst.type() == CV_8U ); cv::inRange( src1, lowerb, upperb, dst ); } CV_IMPL void cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && dst.type() == CV_8U ); cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op ); } CV_IMPL void cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && dst.type() == CV_8U ); cv::compare( src1, value, dst, cmp_op ); } CV_IMPL void cvMin( const void* srcarr1, const void* srcarr2, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::min( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvMax( const void* srcarr1, const void* srcarr2, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::max( src1, cv::cvarrToMat(srcarr2), dst ); } CV_IMPL void cvMinS( const void* srcarr1, double value, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::min( src1, value, dst ); } CV_IMPL void cvMaxS( const void* srcarr1, double value, void* dstarr ) { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); CV_Assert( src1.size() == dst.size() && src1.type() == dst.type() ); cv::max( src1, value, dst ); } /* End of file. */