/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { class CV_InpaintTest : public cvtest::BaseTest { public: CV_InpaintTest(); ~CV_InpaintTest(); protected: void run(int); }; CV_InpaintTest::CV_InpaintTest() { } CV_InpaintTest::~CV_InpaintTest() {} void CV_InpaintTest::run( int ) { string folder = string(ts->get_data_path()) + "inpaint/"; Mat orig = imread(folder + "orig.png"); Mat exp1 = imread(folder + "exp1.png"); Mat exp2 = imread(folder + "exp2.png"); Mat mask = imread(folder + "mask.png"); if (orig.empty() || exp1.empty() || exp2.empty() || mask.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } Mat inv_mask; mask.convertTo(inv_mask, CV_8UC3, -1.0, 255.0); Mat mask1ch; cv::cvtColor(mask, mask1ch, COLOR_BGR2GRAY); Mat test = orig.clone(); test.setTo(Scalar::all(255), mask1ch); Mat res1, res2; inpaint( test, mask1ch, res1, 5, INPAINT_NS ); inpaint( test, mask1ch, res2, 5, INPAINT_TELEA ); Mat diff1, diff2; absdiff( orig, res1, diff1 ); absdiff( orig, res2, diff2 ); double n1 = cvtest::norm(diff1.reshape(1), NORM_INF, inv_mask.reshape(1)); double n2 = cvtest::norm(diff2.reshape(1), NORM_INF, inv_mask.reshape(1)); if (n1 != 0 || n2 != 0) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); return; } absdiff( exp1, res1, diff1 ); absdiff( exp2, res2, diff2 ); n1 = cvtest::norm(diff1.reshape(1), NORM_INF, mask.reshape(1)); n2 = cvtest::norm(diff2.reshape(1), NORM_INF, mask.reshape(1)); const int jpeg_thres = 3; if (n1 > jpeg_thres || n2 > jpeg_thres) { ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } ts->set_failed_test_info(cvtest::TS::OK); } TEST(Photo_Inpaint, regression) { CV_InpaintTest test; test.safe_run(); } typedef testing::TestWithParam > formats; TEST_P(formats, basic) { const int type = get<0>(GetParam()); Mat src(100, 100, type); src.setTo(Scalar::all(128)); Mat ref = src.clone(); Mat dst, mask = Mat::zeros(src.size(), CV_8U); circle(src, Point(50, 50), 5, Scalar::all(200), 6); circle(mask, Point(50, 50), 5, Scalar::all(200), 6); inpaint(src, mask, dst, 10, INPAINT_NS); Mat dst2; inpaint(src, mask, dst2, 10, INPAINT_TELEA); ASSERT_EQ(cv::norm(dst, ref, NORM_INF), 0.); ASSERT_EQ(cv::norm(dst2, ref, NORM_INF), 0.); } INSTANTIATE_TEST_CASE_P(Photo_Inpaint, formats, testing::Values(CV_32FC1, CV_16UC1, CV_8UC1, CV_8UC3)); TEST(Photo_InpaintBorders, regression) { Mat img(64, 64, CV_8U); img = 128; img(Rect(0, 0, 16, 64)) = 0; Mat mask(64, 64, CV_8U); mask = 0; mask(Rect(0, 0, 16, 64)) = 255; Mat inpainted; inpaint(img, mask, inpainted, 1, INPAINT_TELEA); Mat diff; cv::absdiff(inpainted, 128*Mat::ones(inpainted.size(), inpainted.type()), diff); ASSERT_TRUE(countNonZero(diff) == 0); } typedef testing::TestWithParam> Photo_InpaintSmallBorders; TEST_P(Photo_InpaintSmallBorders, regression) { int type = get<0>(GetParam()); Mat img(5, 5, type, Scalar::all(128)); Mat expected = img.clone(); Mat mask = Mat::zeros(5, 5, CV_8U); mask(Rect(1, 1, 3, 3)) = 255; img.setTo(Scalar::all(0), mask); Mat inpainted, diff; inpaint(img, mask, inpainted, 1, INPAINT_TELEA); cv::absdiff(inpainted, expected, diff); ASSERT_EQ(countNonZero(diff.reshape(1)), 0); inpaint(img, mask, inpainted, 1, INPAINT_NS); cv::absdiff(inpainted, expected, diff); ASSERT_EQ(countNonZero(diff.reshape(1)), 0); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Photo_InpaintSmallBorders, Values(CV_8UC1, CV_8UC3)); }} // namespace