#include "perf_precomp.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/opencv_modules.hpp" #include "opencv2/core/ocl.hpp" namespace opencv_test { using namespace perf; #define SURF_MATCH_CONFIDENCE 0.65f #define ORB_MATCH_CONFIDENCE 0.3f #define WORK_MEGAPIX 0.6 typedef TestBaseWithParam stitch; typedef TestBaseWithParam stitchExposureCompensation; typedef TestBaseWithParam > stitchDatasets; typedef TestBaseWithParam> stitchExposureCompMultiFeed; #if defined(HAVE_OPENCV_XFEATURES2D) && defined(OPENCV_ENABLE_NONFREE) #define TEST_DETECTORS testing::Values("surf", "orb", "akaze") #else #define TEST_DETECTORS testing::Values("orb") #endif #define TEST_EXP_COMP_BS testing::Values(32, 16, 12, 10, 8) #define TEST_EXP_COMP_NR_FEED testing::Values(1, 2, 3, 4, 5) #define TEST_EXP_COMP_MODE testing::Values("gain", "channels", "blocks_gain", "blocks_channels") #define AFFINE_DATASETS testing::Values("s", "budapest", "newspaper", "prague") PERF_TEST_P(stitch, a123, TEST_DETECTORS) { Mat pano; vector imgs; imgs.push_back( imread( getDataPath("stitching/a1.png") ) ); imgs.push_back( imread( getDataPath("stitching/a2.png") ) ); imgs.push_back( imread( getDataPath("stitching/a3.png") ) ); Ptr featuresFinder = getFeatureFinder(GetParam()); Ptr featuresMatcher = GetParam() == "orb" ? makePtr(false, ORB_MATCH_CONFIDENCE) : makePtr(false, SURF_MATCH_CONFIDENCE); declare.time(30 * 20).iterations(20); while(next()) { Ptr stitcher = Stitcher::create(); stitcher->setFeaturesFinder(featuresFinder); stitcher->setFeaturesMatcher(featuresMatcher); stitcher->setWarper(makePtr()); stitcher->setRegistrationResol(WORK_MEGAPIX); startTimer(); stitcher->stitch(imgs, pano); stopTimer(); } EXPECT_NEAR(pano.size().width, 1182, 50); EXPECT_NEAR(pano.size().height, 682, 30); SANITY_CHECK_NOTHING(); } PERF_TEST_P(stitchExposureCompensation, a123, TEST_EXP_COMP_BS) { Mat pano; vector imgs; imgs.push_back( imread( getDataPath("stitching/a1.png") ) ); imgs.push_back( imread( getDataPath("stitching/a2.png") ) ); imgs.push_back( imread( getDataPath("stitching/a3.png") ) ); int bs = GetParam(); declare.time(30 * 10).iterations(10); while(next()) { Ptr stitcher = Stitcher::create(); stitcher->setWarper(makePtr()); stitcher->setRegistrationResol(WORK_MEGAPIX); stitcher->setExposureCompensator( makePtr(bs, bs)); startTimer(); stitcher->stitch(imgs, pano); stopTimer(); } EXPECT_NEAR(pano.size().width, 1182, 50); EXPECT_NEAR(pano.size().height, 682, 30); SANITY_CHECK_NOTHING(); } PERF_TEST_P(stitchExposureCompMultiFeed, a123, testing::Combine(TEST_EXP_COMP_MODE, TEST_EXP_COMP_NR_FEED)) { const int block_size = 32; Mat pano; vector imgs; imgs.push_back( imread( getDataPath("stitching/a1.png") ) ); imgs.push_back( imread( getDataPath("stitching/a2.png") ) ); imgs.push_back( imread( getDataPath("stitching/a3.png") ) ); string mode = get<0>(GetParam()); int nr_feeds = get<1>(GetParam()); declare.time(30 * 10).iterations(10); Ptr exp_comp; if (mode == "gain") exp_comp = makePtr(nr_feeds); else if (mode == "channels") exp_comp = makePtr(nr_feeds); else if (mode == "blocks_gain") exp_comp = makePtr(block_size, block_size, nr_feeds); else if (mode == "blocks_channels") exp_comp = makePtr(block_size, block_size, nr_feeds); while(next()) { Ptr stitcher = Stitcher::create(); stitcher->setWarper(makePtr()); stitcher->setRegistrationResol(WORK_MEGAPIX); stitcher->setExposureCompensator(exp_comp); startTimer(); stitcher->stitch(imgs, pano); stopTimer(); } EXPECT_NEAR(pano.size().width, 1182, 50); EXPECT_NEAR(pano.size().height, 682, 30); SANITY_CHECK_NOTHING(); } PERF_TEST_P(stitch, b12, TEST_DETECTORS) { Mat pano; vector imgs; imgs.push_back( imread( getDataPath("stitching/b1.png") ) ); imgs.push_back( imread( getDataPath("stitching/b2.png") ) ); Ptr featuresFinder = getFeatureFinder(GetParam()); Ptr featuresMatcher = GetParam() == "orb" ? makePtr(false, ORB_MATCH_CONFIDENCE) : makePtr(false, SURF_MATCH_CONFIDENCE); declare.time(30 * 20).iterations(20); while(next()) { Ptr stitcher = Stitcher::create(); stitcher->setFeaturesFinder(featuresFinder); stitcher->setFeaturesMatcher(featuresMatcher); stitcher->setWarper(makePtr()); stitcher->setRegistrationResol(WORK_MEGAPIX); startTimer(); stitcher->stitch(imgs, pano); stopTimer(); } EXPECT_NEAR(pano.size().width, 1117, GetParam() == "surf" ? 100 : 50); EXPECT_NEAR(pano.size().height, 642, GetParam() == "surf" ? 60 : 30); SANITY_CHECK_NOTHING(); } PERF_TEST_P(stitchDatasets, affine, testing::Combine(AFFINE_DATASETS, TEST_DETECTORS)) { string dataset = get<0>(GetParam()); string detector = get<1>(GetParam()); Mat pano; vector imgs; int width, height, allowed_diff = 20; Ptr featuresFinder = getFeatureFinder(detector); if(dataset == "budapest") { imgs.push_back(imread(getDataPath("stitching/budapest1.jpg"))); imgs.push_back(imread(getDataPath("stitching/budapest2.jpg"))); imgs.push_back(imread(getDataPath("stitching/budapest3.jpg"))); imgs.push_back(imread(getDataPath("stitching/budapest4.jpg"))); imgs.push_back(imread(getDataPath("stitching/budapest5.jpg"))); imgs.push_back(imread(getDataPath("stitching/budapest6.jpg"))); width = 2313; height = 1158; // this dataset is big, the results between surf and orb differ slightly, // but both are still good allowed_diff = 50; // we need to boost ORB number of features to be able to stitch this dataset // SURF works just fine with default settings if(detector == "orb") featuresFinder = ORB::create(1500); } else if (dataset == "newspaper") { imgs.push_back(imread(getDataPath("stitching/newspaper1.jpg"))); imgs.push_back(imread(getDataPath("stitching/newspaper2.jpg"))); imgs.push_back(imread(getDataPath("stitching/newspaper3.jpg"))); imgs.push_back(imread(getDataPath("stitching/newspaper4.jpg"))); width = 1791; height = 1136; // we need to boost ORB number of features to be able to stitch this dataset // SURF works just fine with default settings if(detector == "orb") featuresFinder = ORB::create(3000); } else if (dataset == "prague") { imgs.push_back(imread(getDataPath("stitching/prague1.jpg"))); imgs.push_back(imread(getDataPath("stitching/prague2.jpg"))); width = 983; height = 1759; } else // dataset == "s" { imgs.push_back(imread(getDataPath("stitching/s1.jpg"))); imgs.push_back(imread(getDataPath("stitching/s2.jpg"))); width = 1815; height = 700; } declare.time(30 * 20).iterations(20); while(next()) { Ptr stitcher = Stitcher::create(Stitcher::SCANS); stitcher->setFeaturesFinder(featuresFinder); if (cv::ocl::useOpenCL()) cv::theRNG() = cv::RNG(12345); // prevent fails of Windows OpenCL builds (see #8294) startTimer(); stitcher->stitch(imgs, pano); stopTimer(); } EXPECT_NEAR(pano.size().width, width, allowed_diff); EXPECT_NEAR(pano.size().height, height, allowed_diff); SANITY_CHECK_NOTHING(); } } // namespace