/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/hal/intrin.hpp" namespace cv { void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy, int ksize, int borderType ) { // Prepare InputArray src Mat src = _src.getMat(); CV_Assert( !src.empty() ); CV_Assert( src.type() == CV_8UC1 ); CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE ); // Prepare OutputArrays dx, dy _dx.create( src.size(), CV_16SC1 ); _dy.create( src.size(), CV_16SC1 ); Mat dx = _dx.getMat(), dy = _dy.getMat(); // TODO: Allow for other kernel sizes CV_Assert(ksize == 3); // Get dimensions const int H = src.rows, W = src.cols; // Row, column indices int i, j; // Store pointers to rows of input/output data // Padded by two rows for border handling uchar* P_src[H+2]; short* P_dx [H+2]; short* P_dy [H+2]; int i_top = 0, // Case for H == 1 && W == 1 && BORDER_REPLICATE i_bottom = H - 1, j_offl = 0, // j offset from 0th pixel to reach -1st pixel j_offr = 0; // j offset from W-1th pixel to reach Wth pixel if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101 { if ( H > 1 ) { i_top = 1; i_bottom = H - 2; } if ( W > 1 ) { j_offl = 1; j_offr = -1; } } P_src[0] = src.ptr(i_top); // Mirrored top border P_src[H+1] = src.ptr(i_bottom); // Mirrored bottom border for ( i = 0; i < H; i++ ) { P_src[i+1] = src.ptr(i); P_dx [i] = dx.ptr(i); P_dy [i] = dy.ptr(i); } // Pointer to row vectors uchar *p_src, *c_src, *n_src; // previous, current, next row short *c_dx, *c_dy; int i_start = 0; int j_start = 0; #if CV_SIMD128 // Characters in variable names have the following meanings: // u: unsigned char // s: signed int // // [row][column] // m: offset -1 // n: offset 0 // p: offset 1 // Example: umn is offset -1 in row and offset 0 in column uchar tmp; v_uint8x16 v_um, v_un, v_up; v_uint16x8 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2; v_int16x8 v_s1m1, v_s1m2, v_s1n1, v_s1n2, v_s1p1, v_s1p2, v_s2m1, v_s2m2, v_s2n1, v_s2n2, v_s2p1, v_s2p2, v_s3m1, v_s3m2, v_s3n1, v_s3n2, v_s3p1, v_s3p2, v_s4m1, v_s4m2, v_s4n1, v_s4n2, v_s4p1, v_s4p2, v_tmp, v_sdx1, v_sdx2, v_sdy1, v_sdy2; uchar *m_src; short *c_dx1, *c_dx2, *c_dy1, *c_dy2; for ( i = 0; i < H - 2; i += 2 ) { p_src = P_src[i]; c_src = P_src[i+1]; n_src = P_src[i+2]; m_src = P_src[i+3]; c_dx1 = P_dx [i]; c_dy1 = P_dy [i]; c_dx2 = P_dx [i+1]; c_dy2 = P_dy [i+1]; // 16-column chunks at a time for ( j = 0; j < W - 15; j += 16 ) { bool left = false, right = false; if ( j == 0 ) left = true; if ( j == W - 16 ) right = true; // Load top row for 3x3 Sobel filter if ( left ) { tmp = p_src[j-1]; p_src[j-1] = p_src[j+j_offl]; } v_um = v_load(&p_src[j-1]); if ( left ) p_src[j-1] = tmp; v_un = v_load(&p_src[j]); if ( right ) { tmp = p_src[j+16]; p_src[j+16] = p_src[j+15+j_offr]; } v_up = v_load(&p_src[j+1]); if ( right ) p_src[j+16] = tmp; v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_s1m1 = v_reinterpret_as_s16(v_um1); v_s1m2 = v_reinterpret_as_s16(v_um2); v_s1n1 = v_reinterpret_as_s16(v_un1); v_s1n2 = v_reinterpret_as_s16(v_un2); v_s1p1 = v_reinterpret_as_s16(v_up1); v_s1p2 = v_reinterpret_as_s16(v_up2); // Load second row for 3x3 Sobel filter if ( left ) { tmp = c_src[j-1]; c_src[j-1] = c_src[j+j_offl]; } v_um = v_load(&c_src[j-1]); if ( left ) c_src[j-1] = tmp; v_un = v_load(&c_src[j]); if ( right ) { tmp = c_src[j+16]; c_src[j+16] = c_src[j+15+j_offr]; } v_up = v_load(&c_src[j+1]); if ( right ) c_src[j+16] = tmp; v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_s2m1 = v_reinterpret_as_s16(v_um1); v_s2m2 = v_reinterpret_as_s16(v_um2); v_s2n1 = v_reinterpret_as_s16(v_un1); v_s2n2 = v_reinterpret_as_s16(v_un2); v_s2p1 = v_reinterpret_as_s16(v_up1); v_s2p2 = v_reinterpret_as_s16(v_up2); // Load third row for 3x3 Sobel filter if ( left ) { tmp = n_src[j-1]; n_src[j-1] = n_src[j+j_offl]; } v_um = v_load(&n_src[j-1]); if ( left ) n_src[j-1] = tmp; v_un = v_load(&n_src[j]); if ( right ) { tmp = n_src[j+16]; n_src[j+16] = n_src[j+15+j_offr]; } v_up = v_load(&n_src[j+1]); if ( right ) n_src[j+16] = tmp; v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_s3m1 = v_reinterpret_as_s16(v_um1); v_s3m2 = v_reinterpret_as_s16(v_um2); v_s3n1 = v_reinterpret_as_s16(v_un1); v_s3n2 = v_reinterpret_as_s16(v_un2); v_s3p1 = v_reinterpret_as_s16(v_up1); v_s3p2 = v_reinterpret_as_s16(v_up2); // Load fourth row for 3x3 Sobel filter if ( left ) { tmp = m_src[j-1]; m_src[j-1] = m_src[j+j_offl]; } v_um = v_load(&m_src[j-1]); if ( left ) m_src[j-1] = tmp; v_un = v_load(&m_src[j]); if ( right ) { tmp = m_src[j+16]; m_src[j+16] = m_src[j+15+j_offr]; } v_up = v_load(&m_src[j+1]); if ( right ) m_src[j+16] = tmp; v_expand(v_um, v_um1, v_um2); v_expand(v_un, v_un1, v_un2); v_expand(v_up, v_up1, v_up2); v_s4m1 = v_reinterpret_as_s16(v_um1); v_s4m2 = v_reinterpret_as_s16(v_um2); v_s4n1 = v_reinterpret_as_s16(v_un1); v_s4n2 = v_reinterpret_as_s16(v_un2); v_s4p1 = v_reinterpret_as_s16(v_up1); v_s4p2 = v_reinterpret_as_s16(v_up2); // dx v_tmp = v_s2p1 - v_s2m1; v_sdx1 = (v_s1p1 - v_s1m1) + (v_tmp + v_tmp) + (v_s3p1 - v_s3m1); v_tmp = v_s2p2 - v_s2m2; v_sdx2 = (v_s1p2 - v_s1m2) + (v_tmp + v_tmp) + (v_s3p2 - v_s3m2); // dy v_tmp = v_s3n1 - v_s1n1; v_sdy1 = (v_s3m1 - v_s1m1) + (v_tmp + v_tmp) + (v_s3p1 - v_s1p1); v_tmp = v_s3n2 - v_s1n2; v_sdy2 = (v_s3m2 - v_s1m2) + (v_tmp + v_tmp) + (v_s3p2 - v_s1p2); // Store v_store(&c_dx1[j], v_sdx1); v_store(&c_dx1[j+8], v_sdx2); v_store(&c_dy1[j], v_sdy1); v_store(&c_dy1[j+8], v_sdy2); // dx v_tmp = v_s3p1 - v_s3m1; v_sdx1 = (v_s2p1 - v_s2m1) + (v_tmp + v_tmp) + (v_s4p1 - v_s4m1); v_tmp = v_s3p2 - v_s3m2; v_sdx2 = (v_s2p2 - v_s2m2) + (v_tmp + v_tmp) + (v_s4p2 - v_s4m2); // dy v_tmp = v_s4n1 - v_s2n1; v_sdy1 = (v_s4m1 - v_s2m1) + (v_tmp + v_tmp) + (v_s4p1 - v_s2p1); v_tmp = v_s4n2 - v_s2n2; v_sdy2 = (v_s4m2 - v_s2m2) + (v_tmp + v_tmp) + (v_s4p2 - v_s2p2); // Store v_store(&c_dx2[j], v_sdx1); v_store(&c_dx2[j+8], v_sdx2); v_store(&c_dy2[j], v_sdy1); v_store(&c_dy2[j+8], v_sdy2); } } i_start = i; j_start = j; #endif /* NOTE: * * Sobel-x: -1 0 1 * -2 0 2 * -1 0 1 * * Sobel-y: -1 -2 -1 * 0 0 0 * 1 2 1 */ int j_p, j_n; uchar v00, v01, v02, v10, v11, v12, v20, v21, v22; for ( i = 0; i < H; i++ ) { p_src = P_src[i]; c_src = P_src[i+1]; n_src = P_src[i+2]; c_dx = P_dx [i]; c_dy = P_dy [i]; // Pre-load 2 columns j = i >= i_start ? 0 : j_start; j_p = j - 1; if ( j_p < 0 ) j_p = j + j_offl; v00 = p_src[j_p]; v01 = p_src[j]; v10 = c_src[j_p]; v11 = c_src[j]; v20 = n_src[j_p]; v21 = n_src[j]; for ( ; j < W; j++ ) { j_p = j - 1; j_n = j + 1; if ( j_p < 0 ) j_p = j + j_offl; if ( j_n >= W ) j_n = j + j_offr; // Get values for next column v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n]; c_dx[j] = -(v00 + v10 + v10 + v20) + (v02 + v12 + v12 + v22); c_dy[j] = -(v00 + v01 + v01 + v02) + (v20 + v21 + v21 + v22); // Move values back one column for next iteration v00 = v01; v10 = v11; v20 = v21; v01 = v02; v11 = v12; v21 = v22; } } } }