#include "opencv2/ml/ml.hpp" #include "opencv2/core/core.hpp" #include "opencv2/core/utility.hpp" #include #include #include using namespace cv; using namespace cv::ml; static void help() { printf( "\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees.\n" "Usage:\n\t./tree_engine [-r=] [-ts=type_spec] \n" "where -r= specified the 0-based index of the response (0 by default)\n" "-ts= specifies the var type spec in the form ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\n" " is the name of training data file in comma-separated value format\n\n"); } static void train_and_print_errs(Ptr model, const Ptr& data) { bool ok = model->train(data); if( !ok ) { printf("Training failed\n"); } else { printf( "train error: %f\n", model->calcError(data, false, noArray()) ); printf( "test error: %f\n\n", model->calcError(data, true, noArray()) ); } } int main(int argc, char** argv) { cv::CommandLineParser parser(argc, argv, "{ help h | | }{r | 0 | }{ts | | }{@input | | }"); if (parser.has("help")) { help(); return 0; } std::string filename = parser.get("@input"); int response_idx; std::string typespec; response_idx = parser.get("r"); typespec = parser.get("ts"); if( filename.empty() || !parser.check() ) { parser.printErrors(); help(); return 0; } printf("\nReading in %s...\n\n",filename.c_str()); const double train_test_split_ratio = 0.5; Ptr data = TrainData::loadFromCSV(filename, 0, response_idx, response_idx+1, typespec); if( data.empty() ) { printf("ERROR: File %s can not be read\n", filename.c_str()); return 0; } data->setTrainTestSplitRatio(train_test_split_ratio); std::cout << "Test/Train: " << data->getNTestSamples() << "/" << data->getNTrainSamples(); printf("======DTREE=====\n"); Ptr dtree = DTrees::create(); dtree->setMaxDepth(10); dtree->setMinSampleCount(2); dtree->setRegressionAccuracy(0); dtree->setUseSurrogates(false); dtree->setMaxCategories(16); dtree->setCVFolds(0); dtree->setUse1SERule(false); dtree->setTruncatePrunedTree(false); dtree->setPriors(Mat()); train_and_print_errs(dtree, data); if( (int)data->getClassLabels().total() <= 2 ) // regression or 2-class classification problem { printf("======BOOST=====\n"); Ptr boost = Boost::create(); boost->setBoostType(Boost::GENTLE); boost->setWeakCount(100); boost->setWeightTrimRate(0.95); boost->setMaxDepth(2); boost->setUseSurrogates(false); boost->setPriors(Mat()); train_and_print_errs(boost, data); } printf("======RTREES=====\n"); Ptr rtrees = RTrees::create(); rtrees->setMaxDepth(10); rtrees->setMinSampleCount(2); rtrees->setRegressionAccuracy(0); rtrees->setUseSurrogates(false); rtrees->setMaxCategories(16); rtrees->setPriors(Mat()); rtrees->setCalculateVarImportance(true); rtrees->setActiveVarCount(0); rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 0)); train_and_print_errs(rtrees, data); cv::Mat ref_labels = data->getClassLabels(); cv::Mat test_data = data->getTestSampleIdx(); cv::Mat predict_labels; rtrees->predict(data->getSamples(), predict_labels); cv::Mat variable_importance = rtrees->getVarImportance(); std::cout << "Estimated variable importance" << std::endl; for (int i = 0; i < variable_importance.rows; i++) { std::cout << "Variable " << i << ": " << variable_importance.at(i, 0) << std::endl; } return 0; }