/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include namespace cv { // class for grouping object candidates, detected by Cascade Classifier, HOG etc. // instance of the class is to be passed to cv::partition (see cxoperations.hpp) class CV_EXPORTS SimilarRects { public: SimilarRects(double _eps) : eps(_eps) {} inline bool operator()(const Rect& r1, const Rect& r2) const { double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5; return std::abs(r1.x - r2.x) <= delta && std::abs(r1.y - r2.y) <= delta && std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; } double eps; }; static void groupRectangles(vector& rectList, int groupThreshold, double eps, vector* weights, vector* levelWeights) { if( groupThreshold <= 0 || rectList.empty() ) { if( weights ) { size_t i, sz = rectList.size(); weights->resize(sz); for( i = 0; i < sz; i++ ) (*weights)[i] = 1; } return; } vector labels; int nclasses = partition(rectList, labels, SimilarRects(eps)); vector rrects(nclasses); vector rweights(nclasses, 0); vector rejectLevels(nclasses, 0); vector rejectWeights(nclasses, DBL_MIN); int i, j, nlabels = (int)labels.size(); for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; rrects[cls].x += rectList[i].x; rrects[cls].y += rectList[i].y; rrects[cls].width += rectList[i].width; rrects[cls].height += rectList[i].height; rweights[cls]++; } if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() ) { for( i = 0; i < nlabels; i++ ) { int cls = labels[i]; if( (*weights)[i] > rejectLevels[cls] ) { rejectLevels[cls] = (*weights)[i]; rejectWeights[cls] = (*levelWeights)[i]; } else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) ) rejectWeights[cls] = (*levelWeights)[i]; } } for( i = 0; i < nclasses; i++ ) { Rect r = rrects[i]; float s = 1.f/rweights[i]; rrects[i] = Rect(saturate_cast(r.x*s), saturate_cast(r.y*s), saturate_cast(r.width*s), saturate_cast(r.height*s)); } rectList.clear(); if( weights ) weights->clear(); if( levelWeights ) levelWeights->clear(); for( i = 0; i < nclasses; i++ ) { Rect r1 = rrects[i]; int n1 = levelWeights ? rejectLevels[i] : rweights[i]; double w1 = rejectWeights[i]; if( n1 <= groupThreshold ) continue; // filter out small face rectangles inside large rectangles for( j = 0; j < nclasses; j++ ) { int n2 = rweights[j]; if( j == i || n2 <= groupThreshold ) continue; Rect r2 = rrects[j]; int dx = saturate_cast( r2.width * eps ); int dy = saturate_cast( r2.height * eps ); if( i != j && r1.x >= r2.x - dx && r1.y >= r2.y - dy && r1.x + r1.width <= r2.x + r2.width + dx && r1.y + r1.height <= r2.y + r2.height + dy && (n2 > std::max(3, n1) || n1 < 3) ) break; } if( j == nclasses ) { rectList.push_back(r1); if( weights ) weights->push_back(n1); if( levelWeights ) levelWeights->push_back(w1); } } } //new grouping function with using meanshift static void groupRectangles_meanshift(vector& rectList, double detectThreshold, vector* foundWeights, vector& scales, Size winDetSize) { int detectionCount = rectList.size(); vector hits(detectionCount), resultHits; vector hitWeights(detectionCount), resultWeights; Point2d hitCenter; for (int i=0; i < detectionCount; i++) { hitWeights[i] = (*foundWeights)[i]; hitCenter = (rectList[i].tl() + rectList[i].br())*(0.5); //center of rectangles hits[i] = Point3d(hitCenter.x, hitCenter.y, std::log(scales[i])); } rectList.clear(); if (foundWeights) foundWeights->clear(); double logZ = std::log(1.3); Point3d smothing(8, 16, logZ); MeanshiftGrouping msGrouping(smothing, hits, hitWeights, 1e-5, 100); msGrouping.getModes(resultHits, resultWeights, 1); for (unsigned i=0; i < resultHits.size(); ++i) { double scale = exp(resultHits[i].z); hitCenter.x = resultHits[i].x; hitCenter.y = resultHits[i].y; Size s( int(winDetSize.width * scale), int(winDetSize.height * scale) ); Rect resultRect( int(hitCenter.x-s.width/2), int(hitCenter.y-s.height/2), int(s.width), int(s.height) ); if (resultWeights[i] > detectThreshold) { rectList.push_back(resultRect); foundWeights->push_back(resultWeights[i]); } } } void groupRectangles(vector& rectList, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, 0, 0); } void groupRectangles(vector& rectList, vector& weights, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, &weights, 0); } //used for cascade detection algorithm for ROC-curve calculating void groupRectangles(vector& rectList, vector& rejectLevels, vector& levelWeights, int groupThreshold, double eps) { groupRectangles(rectList, groupThreshold, eps, &rejectLevels, &levelWeights); } //can be used for HOG detection algorithm only void groupRectangles_meanshift(vector& rectList, vector& foundWeights, vector& foundScales, double detectThreshold, Size winDetSize) { groupRectangles_meanshift(rectList, detectThreshold, &foundWeights, foundScales, winDetSize); } #define CC_CASCADE_PARAMS "cascadeParams" #define CC_STAGE_TYPE "stageType" #define CC_FEATURE_TYPE "featureType" #define CC_HEIGHT "height" #define CC_WIDTH "width" #define CC_STAGE_NUM "stageNum" #define CC_STAGES "stages" #define CC_STAGE_PARAMS "stageParams" #define CC_BOOST "BOOST" #define CC_MAX_DEPTH "maxDepth" #define CC_WEAK_COUNT "maxWeakCount" #define CC_STAGE_THRESHOLD "stageThreshold" #define CC_WEAK_CLASSIFIERS "weakClassifiers" #define CC_INTERNAL_NODES "internalNodes" #define CC_LEAF_VALUES "leafValues" #define CC_FEATURES "features" #define CC_FEATURE_PARAMS "featureParams" #define CC_MAX_CAT_COUNT "maxCatCount" #define CC_HAAR "HAAR" #define CC_RECTS "rects" #define CC_TILTED "tilted" #define CC_LBP "LBP" #define CC_RECT "rect" #define CV_SUM_PTRS( p0, p1, p2, p3, sum, rect, step ) \ /* (x, y) */ \ (p0) = sum + (rect).x + (step) * (rect).y, \ /* (x + w, y) */ \ (p1) = sum + (rect).x + (rect).width + (step) * (rect).y, \ /* (x + w, y) */ \ (p2) = sum + (rect).x + (step) * ((rect).y + (rect).height), \ /* (x + w, y + h) */ \ (p3) = sum + (rect).x + (rect).width + (step) * ((rect).y + (rect).height) #define CV_TILTED_PTRS( p0, p1, p2, p3, tilted, rect, step ) \ /* (x, y) */ \ (p0) = tilted + (rect).x + (step) * (rect).y, \ /* (x - h, y + h) */ \ (p1) = tilted + (rect).x - (rect).height + (step) * ((rect).y + (rect).height), \ /* (x + w, y + w) */ \ (p2) = tilted + (rect).x + (rect).width + (step) * ((rect).y + (rect).width), \ /* (x + w - h, y + w + h) */ \ (p3) = tilted + (rect).x + (rect).width - (rect).height \ + (step) * ((rect).y + (rect).width + (rect).height) #define CALC_SUM_(p0, p1, p2, p3, offset) \ ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset]) #define CALC_SUM(rect,offset) CALC_SUM_((rect)[0], (rect)[1], (rect)[2], (rect)[3], offset) FeatureEvaluator::~FeatureEvaluator() {} bool FeatureEvaluator::read(const FileNode&) {return true;} Ptr FeatureEvaluator::clone() const { return Ptr(); } int FeatureEvaluator::getFeatureType() const {return -1;} bool FeatureEvaluator::setImage(const Mat&, Size) {return true;} bool FeatureEvaluator::setWindow(Point) { return true; } double FeatureEvaluator::calcOrd(int) const { return 0.; } int FeatureEvaluator::calcCat(int) const { return 0; } //---------------------------------------------- HaarEvaluator --------------------------------------- class HaarEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); float calc( int offset ) const; void updatePtrs( const Mat& sum ); bool read( const FileNode& node ); bool tilted; enum { RECT_NUM = 3 }; struct { Rect r; float weight; } rect[RECT_NUM]; const int* p[RECT_NUM][4]; }; HaarEvaluator(); virtual ~HaarEvaluator(); virtual bool read( const FileNode& node ); virtual Ptr clone() const; virtual int getFeatureType() const { return FeatureEvaluator::HAAR; } virtual bool setImage(const Mat&, Size origWinSize); virtual bool setWindow(Point pt); double operator()(int featureIdx) const { return featuresPtr[featureIdx].calc(offset) * varianceNormFactor; } virtual double calcOrd(int featureIdx) const { return (*this)(featureIdx); } private: Size origWinSize; Ptr > features; Feature* featuresPtr; // optimization bool hasTiltedFeatures; Mat sum0, sqsum0, tilted0; Mat sum, sqsum, tilted; Rect normrect; const int *p[4]; const double *pq[4]; int offset; double varianceNormFactor; }; inline HaarEvaluator::Feature :: Feature() { tilted = false; rect[0].r = rect[1].r = rect[2].r = Rect(); rect[0].weight = rect[1].weight = rect[2].weight = 0; p[0][0] = p[0][1] = p[0][2] = p[0][3] = p[1][0] = p[1][1] = p[1][2] = p[1][3] = p[2][0] = p[2][1] = p[2][2] = p[2][3] = 0; } inline float HaarEvaluator::Feature :: calc( int offset ) const { float ret = rect[0].weight * CALC_SUM(p[0], offset) + rect[1].weight * CALC_SUM(p[1], offset); if( rect[2].weight != 0.0f ) ret += rect[2].weight * CALC_SUM(p[2], offset); return ret; } inline void HaarEvaluator::Feature :: updatePtrs( const Mat& sum ) { const int* ptr = (const int*)sum.data; size_t step = sum.step/sizeof(ptr[0]); if (tilted) { CV_TILTED_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); CV_TILTED_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); if (rect[2].weight) CV_TILTED_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); } else { CV_SUM_PTRS( p[0][0], p[0][1], p[0][2], p[0][3], ptr, rect[0].r, step ); CV_SUM_PTRS( p[1][0], p[1][1], p[1][2], p[1][3], ptr, rect[1].r, step ); if (rect[2].weight) CV_SUM_PTRS( p[2][0], p[2][1], p[2][2], p[2][3], ptr, rect[2].r, step ); } } bool HaarEvaluator::Feature :: read( const FileNode& node ) { FileNode rnode = node[CC_RECTS]; FileNodeIterator it = rnode.begin(), it_end = rnode.end(); int ri; for( ri = 0; ri < RECT_NUM; ri++ ) { rect[ri].r = Rect(); rect[ri].weight = 0.f; } for(ri = 0; it != it_end; ++it, ri++) { FileNodeIterator it2 = (*it).begin(); it2 >> rect[ri].r.x >> rect[ri].r.y >> rect[ri].r.width >> rect[ri].r.height >> rect[ri].weight; } tilted = (int)node[CC_TILTED] != 0; return true; } HaarEvaluator::HaarEvaluator() { features = new vector(); } HaarEvaluator::~HaarEvaluator() { } bool HaarEvaluator::read(const FileNode& node) { features->resize(node.size()); featuresPtr = &(*features)[0]; FileNodeIterator it = node.begin(), it_end = node.end(); hasTiltedFeatures = false; for(int i = 0; it != it_end; ++it, i++) { if(!featuresPtr[i].read(*it)) return false; if( featuresPtr[i].tilted ) hasTiltedFeatures = true; } return true; } Ptr HaarEvaluator::clone() const { HaarEvaluator* ret = new HaarEvaluator; ret->origWinSize = origWinSize; ret->features = features; ret->featuresPtr = &(*ret->features)[0]; ret->hasTiltedFeatures = hasTiltedFeatures; ret->sum0 = sum0, ret->sqsum0 = sqsum0, ret->tilted0 = tilted0; ret->sum = sum, ret->sqsum = sqsum, ret->tilted = tilted; ret->normrect = normrect; memcpy( ret->p, p, 4*sizeof(p[0]) ); memcpy( ret->pq, pq, 4*sizeof(pq[0]) ); ret->offset = offset; ret->varianceNormFactor = varianceNormFactor; return ret; } bool HaarEvaluator::setImage( const Mat &image, Size _origWinSize ) { int rn = image.rows+1, cn = image.cols+1; origWinSize = _origWinSize; normrect = Rect(1, 1, origWinSize.width-2, origWinSize.height-2); if (image.cols < origWinSize.width || image.rows < origWinSize.height) return false; if( sum0.rows < rn || sum0.cols < cn ) { sum0.create(rn, cn, CV_32S); sqsum0.create(rn, cn, CV_64F); if (hasTiltedFeatures) tilted0.create( rn, cn, CV_32S); } sum = Mat(rn, cn, CV_32S, sum0.data); sqsum = Mat(rn, cn, CV_32S, sqsum0.data); if( hasTiltedFeatures ) { tilted = Mat(rn, cn, CV_32S, tilted0.data); integral(image, sum, sqsum, tilted); } else integral(image, sum, sqsum); const int* sdata = (const int*)sum.data; const double* sqdata = (const double*)sqsum.data; size_t sumStep = sum.step/sizeof(sdata[0]); size_t sqsumStep = sqsum.step/sizeof(sqdata[0]); CV_SUM_PTRS( p[0], p[1], p[2], p[3], sdata, normrect, sumStep ); CV_SUM_PTRS( pq[0], pq[1], pq[2], pq[3], sqdata, normrect, sqsumStep ); size_t fi, nfeatures = features->size(); for( fi = 0; fi < nfeatures; fi++ ) featuresPtr[fi].updatePtrs( !featuresPtr[fi].tilted ? sum : tilted ); return true; } bool HaarEvaluator::setWindow( Point pt ) { if( pt.x < 0 || pt.y < 0 || pt.x + origWinSize.width >= sum.cols-2 || pt.y + origWinSize.height >= sum.rows-2 ) return false; size_t pOffset = pt.y * (sum.step/sizeof(int)) + pt.x; size_t pqOffset = pt.y * (sqsum.step/sizeof(double)) + pt.x; int valsum = CALC_SUM(p, pOffset); double valsqsum = CALC_SUM(pq, pqOffset); double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum; if( nf > 0. ) nf = sqrt(nf); else nf = 1.; varianceNormFactor = 1./nf; offset = (int)pOffset; return true; } //---------------------------------------------- LBPEvaluator ------------------------------------- class LBPEvaluator : public FeatureEvaluator { public: struct Feature { Feature(); Feature( int x, int y, int _block_w, int _block_h ) : rect(x, y, _block_w, _block_h) {} int calc( int offset ) const; void updatePtrs( const Mat& sum ); bool read(const FileNode& node ); Rect rect; // weight and height for block const int* p[16]; // fast }; LBPEvaluator(); virtual ~LBPEvaluator(); virtual bool read( const FileNode& node ); virtual Ptr clone() const; virtual int getFeatureType() const { return FeatureEvaluator::LBP; } virtual bool setImage(const Mat& image, Size _origWinSize); virtual bool setWindow(Point pt); int operator()(int featureIdx) const { return featuresPtr[featureIdx].calc(offset); } virtual int calcCat(int featureIdx) const { return (*this)(featureIdx); } private: Size origWinSize; Ptr > features; Feature* featuresPtr; // optimization Mat sum0, sum; Rect normrect; int offset; }; inline LBPEvaluator::Feature :: Feature() { rect = Rect(); for( int i = 0; i < 16; i++ ) p[i] = 0; } inline int LBPEvaluator::Feature :: calc( int offset ) const { int cval = CALC_SUM_( p[5], p[6], p[9], p[10], offset ); return (CALC_SUM_( p[0], p[1], p[4], p[5], offset ) >= cval ? 128 : 0) | // 0 (CALC_SUM_( p[1], p[2], p[5], p[6], offset ) >= cval ? 64 : 0) | // 1 (CALC_SUM_( p[2], p[3], p[6], p[7], offset ) >= cval ? 32 : 0) | // 2 (CALC_SUM_( p[6], p[7], p[10], p[11], offset ) >= cval ? 16 : 0) | // 5 (CALC_SUM_( p[10], p[11], p[14], p[15], offset ) >= cval ? 8 : 0)| // 8 (CALC_SUM_( p[9], p[10], p[13], p[14], offset ) >= cval ? 4 : 0)| // 7 (CALC_SUM_( p[8], p[9], p[12], p[13], offset ) >= cval ? 2 : 0)| // 6 (CALC_SUM_( p[4], p[5], p[8], p[9], offset ) >= cval ? 1 : 0); } inline void LBPEvaluator::Feature :: updatePtrs( const Mat& sum ) { const int* ptr = (const int*)sum.data; size_t step = sum.step/sizeof(ptr[0]); Rect tr = rect; CV_SUM_PTRS( p[0], p[1], p[4], p[5], ptr, tr, step ); tr.x += 2*rect.width; CV_SUM_PTRS( p[2], p[3], p[6], p[7], ptr, tr, step ); tr.y += 2*rect.height; CV_SUM_PTRS( p[10], p[11], p[14], p[15], ptr, tr, step ); tr.x -= 2*rect.width; CV_SUM_PTRS( p[8], p[9], p[12], p[13], ptr, tr, step ); } bool LBPEvaluator::Feature :: read(const FileNode& node ) { FileNode rnode = node[CC_RECT]; FileNodeIterator it = rnode.begin(); it >> rect.x >> rect.y >> rect.width >> rect.height; return true; } LBPEvaluator::LBPEvaluator() { features = new vector(); } LBPEvaluator::~LBPEvaluator() { } bool LBPEvaluator::read( const FileNode& node ) { features->resize(node.size()); featuresPtr = &(*features)[0]; FileNodeIterator it = node.begin(), it_end = node.end(); for(int i = 0; it != it_end; ++it, i++) { if(!featuresPtr[i].read(*it)) return false; } return true; } Ptr LBPEvaluator::clone() const { LBPEvaluator* ret = new LBPEvaluator; ret->origWinSize = origWinSize; ret->features = features; ret->featuresPtr = &(*ret->features)[0]; ret->sum0 = sum0, ret->sum = sum; ret->normrect = normrect; ret->offset = offset; return ret; } bool LBPEvaluator::setImage( const Mat& image, Size _origWinSize ) { int rn = image.rows+1, cn = image.cols+1; origWinSize = _origWinSize; if( image.cols < origWinSize.width || image.rows < origWinSize.height ) return false; if( sum0.rows < rn || sum0.cols < cn ) sum0.create(rn, cn, CV_32S); sum = Mat(rn, cn, CV_32S, sum0.data); integral(image, sum); size_t fi, nfeatures = features->size(); for( fi = 0; fi < nfeatures; fi++ ) featuresPtr[fi].updatePtrs( sum ); return true; } bool LBPEvaluator::setWindow( Point pt ) { if( pt.x < 0 || pt.y < 0 || pt.x + origWinSize.width >= sum.cols-2 || pt.y + origWinSize.height >= sum.rows-2 ) return false; offset = pt.y * ((int)sum.step/sizeof(int)) + pt.x; return true; } Ptr FeatureEvaluator::create(int featureType) { return featureType == HAAR ? Ptr(new HaarEvaluator) : featureType == LBP ? Ptr(new LBPEvaluator) : Ptr(); } //---------------------------------------- Classifier Cascade -------------------------------------------- CascadeClassifier::CascadeClassifier() { } CascadeClassifier::CascadeClassifier(const string& filename) { load(filename); } CascadeClassifier::~CascadeClassifier() { } bool CascadeClassifier::empty() const { return oldCascade.empty() && data.stages.empty(); } bool CascadeClassifier::load(const string& filename) { oldCascade.release(); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; if( read(fs.getFirstTopLevelNode()) ) return true; fs.release(); oldCascade = Ptr((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0)); return !oldCascade.empty(); } template inline int predictOrdered( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; for( int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; double val = featureEvaluator(node.featureIdx); idx = val < node.threshold ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template inline int predictCategorical( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; int* cascadeSubsets = &cascade.data.subsets[0]; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::DTree* cascadeWeaks = &cascade.data.classifiers[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; for(int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTree& weak = cascadeWeaks[stage.first + wi]; int idx = 0, root = nodeOfs; do { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[root + idx]; int c = featureEvaluator(node.featureIdx); const int* subset = &cascadeSubsets[(root + idx)*subsetSize]; idx = (subset[c>>5] & (1 << (c & 31))) ? node.left : node.right; } while( idx > 0 ); sum += cascadeLeaves[leafOfs - idx]; nodeOfs += weak.nodeCount; leafOfs += weak.nodeCount + 1; } if( sum < stage.threshold ) return -si; } return 1; } template inline int predictOrderedStump( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; int nstages = (int)cascade.data.stages.size(); for( int stageIdx = 0; stageIdx < nstages; stageIdx++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx]; sum = 0.0; int ntrees = stage.ntrees; for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 ) { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; double value = featureEvaluator(node.featureIdx); sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ]; } if( sum < stage.threshold ) return -stageIdx; } return 1; } template inline int predictCategoricalStump( CascadeClassifier& cascade, Ptr &_featureEvaluator, double& sum ) { int nstages = (int)cascade.data.stages.size(); int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; size_t subsetSize = (cascade.data.ncategories + 31)/32; int* cascadeSubsets = &cascade.data.subsets[0]; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; for( int si = 0; si < nstages; si++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[si]; int wi, ntrees = stage.ntrees; sum = 0; for( wi = 0; wi < ntrees; wi++ ) { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; int c = featureEvaluator(node.featureIdx); const int* subset = &cascadeSubsets[nodeOfs*subsetSize]; sum += cascadeLeaves[ subset[c>>5] & (1 << (c & 31)) ? leafOfs : leafOfs+1]; nodeOfs++; leafOfs += 2; } if( sum < stage.threshold ) return -si; } return 1; } int CascadeClassifier::runAt( Ptr& featureEvaluator, Point pt, double& weight ) { CV_Assert( oldCascade.empty() ); assert(data.featureType == FeatureEvaluator::HAAR || data.featureType == FeatureEvaluator::LBP); return !featureEvaluator->setWindow(pt) ? -1 : data.isStumpBased ? ( data.featureType == FeatureEvaluator::HAAR ? predictOrderedStump( *this, featureEvaluator, weight ) : predictCategoricalStump( *this, featureEvaluator, weight ) ) : ( data.featureType == FeatureEvaluator::HAAR ? predictOrdered( *this, featureEvaluator, weight ) : predictCategorical( *this, featureEvaluator, weight ) ); } bool CascadeClassifier::setImage( Ptr& featureEvaluator, const Mat& image ) { return empty() ? false : featureEvaluator->setImage(image, data.origWinSize); } struct CascadeClassifierInvoker { CascadeClassifierInvoker( CascadeClassifier& _cc, Size _sz1, int _stripSize, int _yStep, double _factor, ConcurrentRectVector& _vec, vector& _levels, vector& _weights, bool outputLevels = false ) { classifier = &_cc; processingRectSize = _sz1; stripSize = _stripSize; yStep = _yStep; scalingFactor = _factor; rectangles = &_vec; rejectLevels = outputLevels ? &_levels : 0; levelWeights = outputLevels ? &_weights : 0; } void operator()(const BlockedRange& range) const { Ptr evaluator = classifier->featureEvaluator->clone(); Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor)); int y1 = range.begin() * stripSize; int y2 = min(range.end() * stripSize, processingRectSize.height); for( int y = y1; y < y2; y += yStep ) { for( int x = 0; x < processingRectSize.width; x += yStep ) { double gypWeight; int result = classifier->runAt(evaluator, Point(x, y), gypWeight); if( rejectLevels ) { if( result == 1 ) result = -1*classifier->data.stages.size(); if( classifier->data.stages.size() + result < 4 ) { rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); rejectLevels->push_back(-result); levelWeights->push_back(gypWeight); } } else if( result > 0 ) rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); if( result == 0 ) x += yStep; } } } CascadeClassifier* classifier; ConcurrentRectVector* rectangles; Size processingRectSize; int stripSize, yStep; double scalingFactor; vector *rejectLevels; vector *levelWeights; }; struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } }; bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, int stripSize, int yStep, double factor, vector& candidates, vector& levels, vector& weights, bool outputRejectLevels ) { if( !featureEvaluator->setImage( image, data.origWinSize ) ) return false; ConcurrentRectVector concurrentCandidates; vector rejectLevels; vector levelWeights; if( outputRejectLevels ) { parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, concurrentCandidates, rejectLevels, levelWeights, true)); levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() ); weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() ); } else { parallel_for(BlockedRange(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, concurrentCandidates, rejectLevels, levelWeights, false)); } candidates.insert( candidates.end(), concurrentCandidates.begin(), concurrentCandidates.end() ); return true; } bool CascadeClassifier::isOldFormatCascade() const { return !oldCascade.empty(); } int CascadeClassifier::getFeatureType() const { return featureEvaluator->getFeatureType(); } Size CascadeClassifier::getOriginalWindowSize() const { return data.origWinSize; } bool CascadeClassifier::setImage(const Mat& image) { return featureEvaluator->setImage(image, data.origWinSize); } void CascadeClassifier::detectMultiScale( const Mat& image, vector& objects, vector& rejectLevels, vector& levelWeights, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels ) { const double GROUP_EPS = 0.2; CV_Assert( scaleFactor > 1 && image.depth() == CV_8U ); if( empty() ) return; if( isOldFormatCascade() ) { MemStorage storage(cvCreateMemStorage(0)); CvMat _image = image; CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels ); vector vecAvgComp; Seq(_objects).copyTo(vecAvgComp); objects.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect()); return; } objects.clear(); if( maxObjectSize.height == 0 || maxObjectSize.width == 0 ) maxObjectSize = image.size(); Mat grayImage = image; if( grayImage.channels() > 1 ) { Mat temp; cvtColor(grayImage, temp, CV_BGR2GRAY); grayImage = temp; } Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U); vector candidates; for( double factor = 1; ; factor *= scaleFactor ) { Size originalWindowSize = getOriginalWindowSize(); Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) ); Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) ); Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height ); if( processingRectSize.width <= 0 || processingRectSize.height <= 0 ) break; if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height ) break; if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height ) continue; Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data ); resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR ); int yStep = factor > 2. ? 1 : 2; int stripCount, stripSize; #ifdef HAVE_TBB const int PTS_PER_THREAD = 1000; stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD; stripCount = std::min(std::max(stripCount, 1), 100); stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep; #else stripCount = 1; stripSize = processingRectSize.height; #endif if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates, rejectLevels, levelWeights, outputRejectLevels ) ) break; } objects.resize(candidates.size()); std::copy(candidates.begin(), candidates.end(), objects.begin()); if( outputRejectLevels ) { groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS ); } else { groupRectangles( objects, minNeighbors, GROUP_EPS ); } } void CascadeClassifier::detectMultiScale( const Mat& image, vector& objects, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize) { vector fakeLevels; vector fakeWeights; detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize, false ); } bool CascadeClassifier::Data::read(const FileNode &root) { // load stage params string stageTypeStr = (string)root[CC_STAGE_TYPE]; if( stageTypeStr == CC_BOOST ) stageType = BOOST; else return false; string featureTypeStr = (string)root[CC_FEATURE_TYPE]; if( featureTypeStr == CC_HAAR ) featureType = FeatureEvaluator::HAAR; else if( featureTypeStr == CC_LBP ) featureType = FeatureEvaluator::LBP; else return false; origWinSize.width = (int)root[CC_WIDTH]; origWinSize.height = (int)root[CC_HEIGHT]; CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 ); isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false; // load feature params FileNode fn = root[CC_FEATURE_PARAMS]; if( fn.empty() ) return false; ncategories = fn[CC_MAX_CAT_COUNT]; int subsetSize = (ncategories + 31)/32, nodeStep = 3 + ( ncategories>0 ? subsetSize : 1 ); // load stages fn = root[CC_STAGES]; if( fn.empty() ) return false; stages.reserve(fn.size()); classifiers.clear(); nodes.clear(); FileNodeIterator it = fn.begin(), it_end = fn.end(); for( int si = 0; it != it_end; si++, ++it ) { FileNode fns = *it; Stage stage; stage.threshold = fns[CC_STAGE_THRESHOLD]; fns = fns[CC_WEAK_CLASSIFIERS]; if(fns.empty()) return false; stage.ntrees = (int)fns.size(); stage.first = (int)classifiers.size(); stages.push_back(stage); classifiers.reserve(stages[si].first + stages[si].ntrees); FileNodeIterator it1 = fns.begin(), it1_end = fns.end(); for( ; it1 != it1_end; ++it1 ) // weak trees { FileNode fnw = *it1; FileNode internalNodes = fnw[CC_INTERNAL_NODES]; FileNode leafValues = fnw[CC_LEAF_VALUES]; if( internalNodes.empty() || leafValues.empty() ) return false; DTree tree; tree.nodeCount = (int)internalNodes.size()/nodeStep; classifiers.push_back(tree); nodes.reserve(nodes.size() + tree.nodeCount); leaves.reserve(leaves.size() + leafValues.size()); if( subsetSize > 0 ) subsets.reserve(subsets.size() + tree.nodeCount*subsetSize); FileNodeIterator internalNodesIter = internalNodes.begin(), internalNodesEnd = internalNodes.end(); for( ; internalNodesIter != internalNodesEnd; ) // nodes { DTreeNode node; node.left = (int)*internalNodesIter; ++internalNodesIter; node.right = (int)*internalNodesIter; ++internalNodesIter; node.featureIdx = (int)*internalNodesIter; ++internalNodesIter; if( subsetSize > 0 ) { for( int j = 0; j < subsetSize; j++, ++internalNodesIter ) subsets.push_back((int)*internalNodesIter); node.threshold = 0.f; } else { node.threshold = (float)*internalNodesIter; ++internalNodesIter; } nodes.push_back(node); } internalNodesIter = leafValues.begin(), internalNodesEnd = leafValues.end(); for( ; internalNodesIter != internalNodesEnd; ++internalNodesIter ) // leaves leaves.push_back((float)*internalNodesIter); } } return true; } bool CascadeClassifier::read(const FileNode& root) { if( !data.read(root) ) return false; // load features featureEvaluator = FeatureEvaluator::create(data.featureType); FileNode fn = root[CC_FEATURES]; if( fn.empty() ) return false; return featureEvaluator->read(fn); } template<> void Ptr::delete_obj() { cvReleaseHaarClassifierCascade(&obj); } } // namespace cv