/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/gpu/device/common.hpp" namespace cv { namespace gpu { namespace device { namespace optical_flow { #define NEEDLE_MAP_SCALE 16 #define NUM_VERTS_PER_ARROW 6 __global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg) { __shared__ float smem[2 * NEEDLE_MAP_SCALE]; volatile float* u_col_sum = smem; volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE; const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x; const int y = blockIdx.y * NEEDLE_MAP_SCALE; u_col_sum[threadIdx.x] = 0; v_col_sum[threadIdx.x] = 0; #pragma unroll for(int i = 0; i < NEEDLE_MAP_SCALE; ++i) { u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x); v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x); } if (threadIdx.x < 8) { // now add the column sums const uint X = threadIdx.x; if (X | 0xfe == 0xfe) // bit 0 is 0 { u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1]; v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1]; } if (X | 0xfe == 0xfc) // bits 0 & 1 == 0 { u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2]; v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2]; } if (X | 0xf8 == 0xf8) { u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4]; v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4]; } if (X == 0) { u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8]; v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8]; } } if (threadIdx.x == 0) { const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE); u_col_sum[0] *= coeff; v_col_sum[0] *= coeff; u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0]; v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0]; } } void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg) { const dim3 block(NEEDLE_MAP_SCALE); const dim3 grid(u_avg.cols, u_avg.rows); NeedleMapAverageKernel<<>>(u, v, u_avg, v_avg); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } __global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float max_flow, float xscale, float yscale) { // test - just draw a triangle at each pixel const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f; const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f; float3 v[NUM_VERTS_PER_ARROW]; if (x < u_avg.cols && y < u_avg.rows) { const float u_avg_val = u_avg(y, x); const float v_avg_val = v_avg(y, x); const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI; float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val); r = fmin(14.0f * (r / max_flow), 14.0f); v[0].z = 1.0f; v[1].z = 0.7f; v[2].z = 0.7f; v[3].z = 0.7f; v[4].z = 0.7f; v[5].z = 1.0f; v[0].x = arrow_x; v[0].y = arrow_y; v[5].x = arrow_x; v[5].y = arrow_y; v[2].x = arrow_x + r * ::cosf(theta); v[2].y = arrow_y + r * ::sinf(theta); v[3].x = v[2].x; v[3].y = v[2].y; r = ::fmin(r, 2.5f); v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f); v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f); v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f); v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f); int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[0].x * xscale; vertex_data[indx++] = v[0].y * yscale; vertex_data[indx++] = v[0].z; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[1].x * xscale; vertex_data[indx++] = v[1].y * yscale; vertex_data[indx++] = v[1].z; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[2].x * xscale; vertex_data[indx++] = v[2].y * yscale; vertex_data[indx++] = v[2].z; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[3].x * xscale; vertex_data[indx++] = v[3].y * yscale; vertex_data[indx++] = v[3].z; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[4].x * xscale; vertex_data[indx++] = v[4].y * yscale; vertex_data[indx++] = v[4].z; color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f; vertex_data[indx++] = v[5].x * xscale; vertex_data[indx++] = v[5].y * yscale; vertex_data[indx++] = v[5].z; } } void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float max_flow, float xscale, float yscale) { const dim3 block(16); const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y)); NeedleMapVertexKernel<<>>(u_avg, v_avg, vertex_buffer, color_data, max_flow, xscale, yscale); cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaDeviceSynchronize() ); } } }}}