/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "op_halide.hpp" #include "opencv2/core/hal/hal.hpp" #include "opencv2/core/hal/intrin.hpp" #include #include "opencl_kernels_dnn.hpp" #ifdef HAVE_OPENCL using namespace cv::dnn::ocl4dnn; #endif namespace cv { namespace dnn { class BaseConvolutionLayerImpl : public ConvolutionLayer { public: BaseConvolutionLayerImpl() {} virtual bool supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || backendId == DNN_BACKEND_HALIDE && haveHalide(); } void finalize(const std::vector &inputs, std::vector &outputs) { CV_Assert(inputs.size() > 0); CV_Assert(blobs.size() >= 1 && blobs.size() <= 2); CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height); const Mat &input = *inputs[0]; CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F)); for (size_t i = 0; i < inputs.size(); i++) { CV_Assert(inputs[i]->type() == input.type()); CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]); CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]); } Size outSize = Size(outputs[0].size[3], outputs[0].size[2]); getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize, kernel, stride, padMode, dilation, pad); } bool hasBias() const { return blobs.size() >= 2; } virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0; bool is1x1() const { return (kernel.height == 1 && kernel.width == 1) && (stride.height == 1 && stride.width == 1) && (dilation.height == 1 && dilation.width == 1); } virtual void applyHalideScheduler(Ptr& node, const std::vector &inputs, const std::vector &outputs, int targetId) const { #ifdef HAVE_HALIDE if (targetId != DNN_TARGET_CPU) { Layer::applyHalideScheduler(node, inputs, outputs, targetId); return; } Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci"); Halide::Func& top = node.dynamicCast()->funcs[1]; Halide::Func& padded_input = node.dynamicCast()->funcs[0]; int outW, outH, outC, outN; getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN); if (outW == 1 || outH <= 2) return; if (is1x1() || outC <= 16) top.reorder(x, c, y) .split(y, yo, yi, 2) .fuse(yo, n, tile) .parallel(tile) .unroll(yi) .vectorize(x, outW >= 16 ? 16 : outW); else top.reorder(x, c, y) .split(y, yo, yi, 2) .split(c, co, ci, 16) .fuse(yo, co, tile).fuse(n, tile, tile) .parallel(tile) .unroll(yi) .vectorize(x, outW >= 16 ? 16 : outW); padded_input.compute_at(top, yi); #endif // HAVE_HALIDE } }; #define IS_POWER_LAYER(layer) \ (!layer.empty() && !layer->type.compare("Power")) //TODO: simultaneously convolution and bias addition for cache optimization class ConvolutionLayerImpl : public BaseConvolutionLayerImpl { public: enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F }; Mat weightsMat; std::vector biasvec; std::vector reluslope; Ptr activ; Ptr bnorm; Ptr scaleLayer; #ifdef HAVE_OPENCL Ptr > convolutionOp; std::vector umat_blobs; bool fusedBias; bool newWeightAndBias; bool newActiv; ocl4dnnFusedActiv_t activType; float power; #endif ConvolutionLayerImpl() { #ifdef HAVE_OPENCL fusedBias = false; newWeightAndBias = false; newActiv = false; activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; power = 0.f; #endif } MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const { Size out(outShape[3], outShape[2]); int inpGroupCn = blobs[0].size[1]; int ksize = inpGroupCn * kernel.height * kernel.width; return shape(out.area(), ksize); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { CV_Assert(blobs.size() != 0); CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]); CV_Assert(inputs.size() == (size_t)1); internals.clear(); int inpCn = inputs[0][1]; int inpH = inputs[0][2]; int inpW = inputs[0][3]; int outCn = blobs[0].size[0]; Size out; if (padMode.empty()) { out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1; out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1; } else { getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, dilation, out); } int ngroups = inpCn / blobs[0].size[1]; CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0); int dims[] = {inputs[0][0], outCn, out.height, out.width}; outputs.resize(inputs.size(), shape(dims)); return false; } bool setActivation(const Ptr& layer) { activ = layer; if (activ.empty()) reluslope.clear(); #ifdef HAVE_OPENCL newActiv = true; activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; if (preferableTarget == DNN_TARGET_OPENCL) { Ptr activ_power = activ.dynamicCast(); if (!activ_power.empty()) { if (activ_power->scale != 1.f || activ_power->shift != 0.f) newWeightAndBias = true; if (activ_power->scale != 1.f) weightsMat.release(); power = activ_power->power; activType = OCL4DNN_CONV_FUSED_ACTIV_POWER; } } #endif return !activ.empty(); } bool setBatchNorm(const Ptr& layer ) { // for now the scale layer followed by the batch norm cannot be fused, only vice versa. if( !scaleLayer.empty() ) return false; bnorm = layer; // we will need to re-compute the weights with the batch // norm coefficients taken into account weightsMat.release(); #ifdef HAVE_OPENCL newWeightAndBias = true; fusedBias = false; #endif return !bnorm.empty(); } bool setScale(const Ptr& layer) { if (layer.empty() || layer->blobs.empty()) return false; scaleLayer = layer; // we will need to re-compute the weights with the scaling // coefficients taken into account weightsMat.release(); #ifdef HAVE_OPENCL newWeightAndBias = true; fusedBias = false; #endif return true; } virtual Ptr initHalide(const std::vector > &inputs) { #ifdef HAVE_HALIDE Halide::Buffer inputBuffer = halideBuffer(inputs[0]); const int inpCn = inputBuffer.channels(); const int outCn = blobs[0].size[0]; const int inpGroupCn = blobs[0].size[1]; const int group = inpCn / inpGroupCn; const int outGroupCn = outCn / group; Halide::Buffer weights = wrapToHalideBuffer(blobs[0]); Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func padded_input(name + "_constant_exterior"); if (pad.width || pad.height) { Halide::Func bounded = Halide::BoundaryConditions::constant_exterior(inputBuffer, 0); padded_input(x, y, c, n) = bounded(x, y, c, n); } else { padded_input(x, y, c, n) = inputBuffer(x, y, c, n); } Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width; Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height; Halide::Expr kc = r.z; for (int i = 1; i < group; ++i) { kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z); } Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) * weights(r.x, r.y, r.z, c)); if (hasBias()) { Halide::Buffer bias = wrapToHalideBuffer(blobs[1], {outCn}); topExpr += bias(c); } top(x, y, c, n) = topExpr; return Ptr(new HalideBackendNode({ padded_input, top })); #endif // HAVE_HALIDE return Ptr(); } class ParallelConv : public cv::ParallelLoopBody { public: enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 }; const Mat* input_; const Mat* weights_; Mat* output_; int outShape[4]; Size kernel_, pad_, stride_, dilation_; int ngroups_, nstripes_; std::vector ofstab_; const std::vector* biasvec_; const std::vector* reluslope_; const ActivationLayer* activ_; bool is1x1_; bool useAVX; bool useAVX2; bool useAVX512; ParallelConv() : input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0), biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false) {} static void run( const Mat& input, Mat& output, const Mat& weights, const std::vector& biasvec, const std::vector& reluslope, Size kernel, Size pad, Size stride, Size dilation, const ActivationLayer* activ, int ngroups, int nstripes ) { CV_Assert( input.dims == 4 && output.dims == 4, input.size[0] == output.size[0], weights.rows == output.size[1], weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height, input.type() == output.type(), input.type() == weights.type(), input.type() == CV_32F, input.isContinuous(), output.isContinuous(), biasvec.size() == (size_t)output.size[1]+2); ParallelConv p; p.input_ = &input; p.weights_ = &weights; p.output_ = &output; for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i]; p.outShape[1] /= ngroups; p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation; p.ngroups_ = ngroups; p.nstripes_ = nstripes; int inpCnAll = input.size[1], width = input.size[3], height = input.size[2]; int inpCn = inpCnAll / ngroups; p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0); p.useAVX = checkHardwareSupport(CPU_AVX); p.useAVX2 = checkHardwareSupport(CPU_AVX2); p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX; int ncn = std::min(inpCn, (int)BLK_SIZE_CN); p.ofstab_.resize(kernel.width*kernel.height*ncn); int* ofstab = &p.ofstab_[0]; for( int k = 0; k < ncn; k++ ) for( int k_r = 0; k_r < kernel.height; k_r++ ) for( int k_c = 0; k_c < kernel.width; k_c++ ) ofstab[(k*kernel.height + k_r)*kernel.width + k_c] = (k*height + k_r*dilation.height)*width + k_c*dilation.width; p.biasvec_ = &biasvec; p.reluslope_ = &reluslope; p.activ_ = p.reluslope_->empty() ? activ : 0; parallel_for_(Range(0, nstripes), p, nstripes); } virtual void operator ()(const Range &r0) const { const int valign = ConvolutionLayerImpl::VEC_ALIGN; int ngroups = ngroups_, batchSize = input_->size[0]*ngroups; int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups; int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups; int nstripes = nstripes_; int kernel_w = kernel_.width, kernel_h = kernel_.height; int pad_w = pad_.width, pad_h = pad_.height; int stride_w = stride_.width, stride_h = stride_.height; int dilation_w = dilation_.width, dilation_h = dilation_.height; int karea = kernel_w*kernel_h; int i, j, k; size_t inpPlaneSize = width*height; size_t outPlaneSize = outW*outH; bool is1x1 = is1x1_; int stripesPerSample; size_t stripeSize; Range r = r0; if( nstripes >= batchSize*2 ) { stripesPerSample = nstripes/batchSize; stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign); stripeSize = std::min(stripeSize, outPlaneSize); } else { stripesPerSample = 1; int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1); r.start *= samplesPerStripe; r.end *= samplesPerStripe; nstripes *= samplesPerStripe; stripeSize = outPlaneSize; } const float* data_inp0_ = input_->ptr(); const int* ofstab = &ofstab_[0]; const float* wptr_orig_ = weights_->ptr(); size_t wstep = weights_->step1(); const float* biasptr_ = &biasvec_->at(0); const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0); float* data_out0_ = output_->ptr(); size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE; AutoBuffer rowbuf0_(rowbufsz + valign); float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float))); // we clear the buffer once; ultimately, it lets us to avoid // tail processing after running the unrolled/vectorized loop. // the main idea is to make sure that the tail (a.k.a. padding) of each row // (i.e. the elements with indices between vsz=karea*ncn and vsz_a) // does not contain NaNs or Infs. Because the padding in the weights // matrix is explicitly initialized with 0's, we handle all other // cases nicely, i.e. we can skip expliciting re-initialization // of the padding - we just retain elements from the previous iteration // of the loop over channels (cn0). memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) ); for( int stripe = r.start; stripe < r.end; stripe++ ) { int subsampleIdx = stripe/stripesPerSample; if( subsampleIdx >= batchSize ) break; int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize); int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize); const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn; float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn; int startOutCn = (subsampleIdx % ngroups)*outCn; const float* wptr_orig = wptr_orig_ + wstep*startOutCn; const float* biasptr = biasptr_ + startOutCn; for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN ) { int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn); int ncn = cn1 - cn0, vsz = karea*ncn; int vsz_a = (int)alignSize(vsz, valign); const float* wptr = wptr_orig + cn0*karea; // we apply [Channels][P]ReLU (if any) during the final pass only. const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0; for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE ) { int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd); int out_i = ofs0 / outW; int out_j = ofs0 - out_i * outW; // do im2row for a part of input tensor float* rowbuf = rowbuf0; for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_i = out_i * stride_h - pad_h; int in_j = out_j * stride_w - pad_w; const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j; ofs += delta; // do im2row for a part of input tensor if( is1x1 ) { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) { for( k = 0; k < vsz; k++ ) rowbuf[k] = imgptr[k*inpPlaneSize]; } } else { bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h; int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { // this condition should be true for most of the tensor elements, i.e. // most of the time the kernel aperture is inside the tensor X-Y plane. if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) { for( k = 0; k < vsz; k++ ) { int k1 = ofstab[k]; float v0 = imgptr[k1]; float v1 = imgptr[k1 + stride_w]; rowbuf[k] = v0; rowbuf[k+vsz_a] = v1; } out_j++; rowbuf += vsz_a; imgptr += stride_w; in_j += stride_w; } else { int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, 0, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for( i = i0; i < i1; i++ ) { for( j = j0; j < j1; j++ ) { int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w; rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; } } } } } } } // now compute dot product of the weights // and im2row-transformed part of the tensor int bsz = ofs1 - ofs0; #if CV_TRY_AVX512_SKX /* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */ if(useAVX512) opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif #if CV_TRY_AVX2 if(useAVX2) opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif #if CV_TRY_AVX if(useAVX) opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif for( int i = 0; i < outCn; i += 2 ) { const float* wptr0 = wptr + i*wstep; const float* wptr1 = wptr0 + wstep; float* outptr0 = data_out0 + ofs0 + i*outPlaneSize; float* outptr1 = outptr0 + outPlaneSize; float bias0 = biasptr[i], bias1 = biasptr[i+1]; float r0 = 1.f, r1 = 1.f; if( i+1 >= outCn ) { wptr1 = wptr0; outptr1 = outptr0; bias1 = bias0; } if( relu ) { r0 = relu[i]; r1 = relu[i+1]; } int j = 0; #if CV_SIMD128 v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32(); for( ; j <= bsz - 4; j += 4 ) { const float* rptr = rowbuf0 + j*vsz_a; v_float32x4 s0, s1; if( cn0 == 0 ) { s0 = v_setall_f32(bias0); s1 = v_setall_f32(bias1); } else { s0 = v_load(outptr0 + j); s1 = v_load(outptr1 + j); } v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(), vs02 = v_setzero_f32(), vs03 = v_setzero_f32(), vs10 = v_setzero_f32(), vs11 = v_setzero_f32(), vs12 = v_setzero_f32(), vs13 = v_setzero_f32(); for( k = 0; k < vsz; k += 4, rptr += 4 ) { v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k); v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a), r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3); vs00 += w0*r0; vs01 += w0*r1; vs02 += w0*r2; vs03 += w0*r3; vs10 += w1*r0; vs11 += w1*r1; vs12 += w1*r2; vs13 += w1*r3; } s0 += v_reduce_sum4(vs00, vs01, vs02, vs03); s1 += v_reduce_sum4(vs10, vs11, vs12, vs13); if( relu ) { s0 = v_select(s0 > z, s0, s0*vr0); s1 = v_select(s1 > z, s1, s1*vr1); } v_store(outptr0 + j, s0); v_store(outptr1 + j, s1); } #endif for( ; j < bsz; j++ ) { const float* rptr = rowbuf0 + j*vsz_a; float s00, s10; if( cn0 == 0 ) { s00 = bias0; s10 = bias1; } else { s00 = outptr0[j]; s10 = outptr1[j]; } for( k = 0; k < vsz; k++ ) { float r0 = rptr[k]; s00 += wptr0[k]*r0; s10 += wptr1[k]*r0; } if( relu ) { s00 = s00 > 0.f ? s00 : s00*r0; s10 = s10 > 0.f ? s10 : s10*r1; } outptr0[j] = s00; outptr1[j] = s10; } } } } if( activ_ ) activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart, (int)(stripeEnd - stripeStart), outPlaneSize, startOutCn, startOutCn + outCn); } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { std::vector inputs; std::vector outputs; inps.getUMatVector(inputs); outs.getUMatVector(outputs); CV_Assert(outputs.size() == 1); for (int i = 0; i < inputs.size(); ++i) CV_Assert(inputs[i].u != outputs[0].u); int group = inputs[0].size[1] / umat_blobs[0].size[1]; if (convolutionOp.empty()) { OCL4DNNConvConfig config; config.in_shape = shape(inputs[0]); config.out_shape = shape(outputs[0]); config.kernel = kernel; config.pad = pad; config.stride = stride; config.dilation = dilation; config.group = group; config.bias_term = (hasBias()) ? true : false; convolutionOp = Ptr >(new OCL4DNNConvSpatial(config)); } int k, outCn = umat_blobs[0].size[0]; if( weightsMat.empty() ) { // prepare weightsMat where each row is aligned and has enough zero padding on the right to // use vectorized (i.e. with intrinsics) loops without tail processing Mat wm = blobs[0].reshape(1, outCn).clone(); if( wm.step1() % VEC_ALIGN != 0 ) { int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); Mat wm_buffer = Mat(outCn, newcols, wm.type()); Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); wm_padding.setTo(Scalar::all(0.)); Mat wm_aligned = wm_buffer.colRange(0, wm.cols); wm.copyTo(wm_aligned); wm = wm_aligned; } weightsMat = wm; Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat(); biasvec.resize(outCn+2); if( biasMat.empty() ) { for( k = 0; k < outCn; k++ ) biasvec[k] = 0.f; } else { for( k = 0; k < outCn; k++ ) biasvec[k] = biasMat.at(k); } if( !bnorm.empty() || !scaleLayer.empty() || IS_POWER_LAYER(activ)) { Mat scale, shift, scale2, shift2; const float *scaleptr = 0, *shiftptr = 0; const float *scaleptr2 = 0, *shiftptr2 = 0; float a = 1.f, b = 0.f; if( !bnorm.empty() ) { bnorm->getScaleShift(scale, shift); CV_Assert( scale.isContinuous() && shift.isContinuous() && scale.type() == CV_32F && shift.type() == CV_32F && scale.total() == (size_t)outCn && shift.total() == (size_t)outCn ); scaleptr = scale.ptr(); shiftptr = shift.ptr(); } if( !scaleLayer.empty() ) { scale2 = scaleLayer->blobs[0]; CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F && scale2.total() == (size_t)outCn ); scaleptr2 = scale2.ptr(); if( scaleLayer->hasBias ) { shift2 = scaleLayer->blobs[1]; CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F && shift2.total() == (size_t)outCn ); shiftptr2 = shift2.ptr(); } } if( IS_POWER_LAYER(activ) ) { Ptr activ_power = activ.dynamicCast(); CV_Assert(activ_power); a = activ_power->scale; b = activ_power->shift; } if (shiftptr || shiftptr2 || b != 0.f) fusedBias = true; for( int i = 0; i < outCn; i++ ) { float s1 = scaleptr ? scaleptr[i] : 1.f; float delta1 = shiftptr ? shiftptr[i] : 0.f; float s2 = scaleptr2 ? scaleptr2[i] : 1.f; float delta2 = shiftptr2 ? shiftptr2[i] : 0.f; float* w_i = weightsMat.ptr(i); int j, wcols = weightsMat.cols; for( j = 0; j < wcols; j++ ) w_i[j] *= (s1*s2*a); biasvec[i] = biasvec[i]*(s1*s2*a) + (delta1*s2*a + delta2*a + b); } } biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; } reluslope.clear(); if( activ ) { Ptr activ_relu = activ.dynamicCast(); if( !activ_relu.empty() ) { reluslope.assign(outCn+2, activ_relu->negativeSlope); activType = OCL4DNN_CONV_FUSED_ACTIV_RELU; } Ptr activ_chprelu = activ.dynamicCast(); if( !activ_chprelu.empty() ) { const Mat& m = activ_chprelu->blobs[0]; CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); const float* mdata = m.ptr(); reluslope.resize(outCn+2); std::copy(mdata, mdata + outCn, reluslope.begin()); reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU; } } if ( newWeightAndBias ) { weightsMat.copyTo(umat_blobs[0]); if ( fusedBias ) { if ( umat_blobs.size() < 2 ) umat_blobs.resize(2); umat_blobs[1] = UMat(biasvec, true); } convolutionOp->setBias(fusedBias || hasBias()); newWeightAndBias = false; } if ( newActiv ) { if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU ) { CV_Assert(!reluslope.empty()); convolutionOp->setActivReLU(true, reluslope[0]); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU) { CV_Assert(!reluslope.empty()); convolutionOp->setActivPReLU(true, reluslope); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER) { convolutionOp->setActivPower(true, power); } else { convolutionOp->setActivReLU(false, 0); convolutionOp->setActivPReLU(false, reluslope); convolutionOp->setActivPower(false, 1.f); } newActiv = false; } UMat& inpMat = inputs[0]; UMat& outMat = outputs[0]; int batch_size = inpMat.size[0]; return convolutionOp->Forward(inpMat, inputs.size() == 2 ? inputs[1] : UMat(), umat_blobs[0], (hasBias() || fusedBias) ? umat_blobs[1] : UMat(), outMat, batch_size); } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); /*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height);*/ CV_Assert(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0, outputs.size() == 1, inputs[0]->data != outputs[0].data); int ngroups = inputs[0]->size[1]/blobs[0].size[1]; CV_Assert(outputs[0].size[1] % ngroups == 0); int k, outCn = blobs[0].size[0]; if( weightsMat.empty() ) { // prepare weightsMat where each row is aligned and has enough zero padding on the right to // use vectorized (i.e. with intrinsics) loops without tail processing Mat wm = blobs[0].reshape(1, outCn).clone(); if( wm.step1() % VEC_ALIGN != 0 ) { int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); Mat wm_buffer = Mat(outCn, newcols, wm.type()); Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); wm_padding.setTo(Scalar::all(0.)); Mat wm_aligned = wm_buffer.colRange(0, wm.cols); wm.copyTo(wm_aligned); wm = wm_aligned; } weightsMat = wm; Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat(); biasvec.resize(outCn+2); if( biasMat.empty() ) { for( k = 0; k < outCn; k++ ) biasvec[k] = 0.f; } else { for( k = 0; k < outCn; k++ ) biasvec[k] = biasMat.at(k); } if( !bnorm.empty() || !scaleLayer.empty() ) { Mat scale, shift, scale2, shift2; const float *scaleptr = 0, *shiftptr = 0; const float *scaleptr2 = 0, *shiftptr2 = 0; if( !bnorm.empty() ) { bnorm->getScaleShift(scale, shift); CV_Assert( scale.isContinuous() && shift.isContinuous() && scale.type() == CV_32F && shift.type() == CV_32F && scale.total() == (size_t)outCn && shift.total() == (size_t)outCn ); scaleptr = scale.ptr(); shiftptr = shift.ptr(); } if( !scaleLayer.empty() ) { scale2 = scaleLayer->blobs[0]; CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F && scale2.total() == (size_t)outCn ); scaleptr2 = scale2.ptr(); if( scaleLayer->hasBias ) { shift2 = scaleLayer->blobs[1]; CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F && shift2.total() == (size_t)outCn ); shiftptr2 = shift2.ptr(); } } for( int i = 0; i < outCn; i++ ) { float s1 = scaleptr ? scaleptr[i] : 1.f; float delta1 = shiftptr ? shiftptr[i] : 0.f; float s2 = scaleptr2 ? scaleptr2[i] : 1.f; float delta2 = shiftptr2 ? shiftptr2[i] : 0.f; float* w_i = weightsMat.ptr(i); int j, wcols = weightsMat.cols; for( j = 0; j < wcols; j++ ) w_i[j] *= (s1*s2); biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2); } } biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; } reluslope.clear(); if( activ ) { Ptr activ_relu = activ.dynamicCast(); if( !activ_relu.empty() ) { reluslope.assign(outCn+2, activ_relu->negativeSlope); } Ptr activ_chprelu = activ.dynamicCast(); if( !activ_chprelu.empty() ) { const Mat& m = activ_chprelu->blobs[0]; CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); const float* mdata = m.ptr(); reluslope.resize(outCn+2); std::copy(mdata, mdata + outCn, reluslope.begin()); reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; } } int nstripes = std::max(getNumThreads(), 1); ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope, kernel, pad, stride, dilation, activ.get(), ngroups, nstripes); } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { CV_Assert(inputs.size() == outputs.size()); int64 flops = 0; for (int i = 0; i < inputs.size(); i++) { flops += total(outputs[i])*(CV_BIG_INT(2)*kernel.area()*inputs[i][1] + 1); } return flops; } }; class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl { public: Mat weightsMat, biasesMat; UMat umat_weights; UMat umat_biases; MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const { int inpCn = inpShape[1]; int inpH = inpShape[2]; int inpW = inpShape[3]; int outCn = outShape[1]; int ngroups = inpCn / blobs[0].size[0]; int outGroupCn = outCn / ngroups; int ksize = outGroupCn * kernel.height * kernel.width; return shape(ksize, inpH * inpW); } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput); CV_Assert(inputs.size() != 0); int inpCn = inputs[0][1]; int inpH = inputs[0][2]; int inpW = inputs[0][3]; int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height; int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width; int outCn = numOutput; CV_Assert(outCn % blobs[0].size[1] == 0); int ngroups = outCn / blobs[0].size[1]; CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0); CV_Assert(blobs[0].size[0] == inpCn); int dims[] = {inputs[0][0], outCn, outH, outW}; outputs.resize(inputs.size(), shape(dims)); internals.push_back(MatShape()); if (!is1x1()) internals[0] = computeColRowShape(inputs[0], outputs[0]); if (hasBias()) internals.push_back(shape(1, outH*outW)); return false; } class MatMulInvoker : public ParallelLoopBody { public: MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes) { a_ = &a; b_ = &b; c_ = &c; nstripes_ = nstripes; useAVX = checkHardwareSupport(CPU_AVX); useAVX2 = checkHardwareSupport(CPU_AVX2); useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX; } void operator()(const Range& range_) const { int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16); Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols)); int mmax = a_->rows; int nmax = range.end - range.start; int kmax = a_->cols; int m, n, k; const float* aptr = a_->ptr(); const float* bptr = b_->ptr() + range.start; float* cptr = c_->ptr() + range.start; size_t astep = a_->step1(); size_t bstep = b_->step1(); size_t cstep = c_->step1(); #if CV_TRY_AVX512_SKX if( useAVX512 ) opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif #if CV_TRY_AVX2 if( useAVX2 ) opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif #if CV_TRY_AVX if( useAVX ) opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif for( m = 0; m < mmax; m += 2 ) { float* dst0 = cptr + cstep*m; float* dst1 = cptr + cstep*std::min(m+1, mmax-1); const float* aptr0 = aptr + astep*m; const float* aptr1 = aptr + astep*std::min(m+1, mmax-1); for( n = 0; n < nmax; n++ ) { dst0[n] = 0.f; dst1[n] = 0.f; } for( k = 0; k < kmax; k += 4 ) { float alpha00 = aptr0[k]; float alpha01 = aptr1[k]; float alpha10 = 0.f, alpha11 = 0.f; float alpha20 = 0.f, alpha21 = 0.f; float alpha30 = 0.f, alpha31 = 0.f; const float* bptr0 = bptr + k*bstep; const float* bptr1 = bptr0; const float* bptr2 = bptr0; const float* bptr3 = bptr0; if( k+1 < kmax ) { alpha10 = aptr0[k+1]; alpha11 = aptr1[k+1]; bptr1 = bptr0 + bstep; if( k+2 < kmax ) { alpha20 = aptr0[k+2]; alpha21 = aptr1[k+2]; bptr2 = bptr1 + bstep; if( k+3 < kmax ) { alpha30 = aptr0[k+3]; alpha31 = aptr1[k+3]; bptr3 = bptr2 + bstep; } } } n = 0; #if CV_SIMD128 v_float32x4 a00 = v_setall_f32(alpha00); v_float32x4 a01 = v_setall_f32(alpha01); v_float32x4 a10 = v_setall_f32(alpha10); v_float32x4 a11 = v_setall_f32(alpha11); v_float32x4 a20 = v_setall_f32(alpha20); v_float32x4 a21 = v_setall_f32(alpha21); v_float32x4 a30 = v_setall_f32(alpha30); v_float32x4 a31 = v_setall_f32(alpha31); for( ; n <= nmax - 4; n += 4 ) { v_float32x4 b0 = v_load(bptr0 + n); v_float32x4 b1 = v_load(bptr1 + n); v_float32x4 b2 = v_load(bptr2 + n); v_float32x4 b3 = v_load(bptr3 + n); v_float32x4 d0 = v_load(dst0 + n); v_float32x4 d1 = v_load(dst1 + n); d0 += b0*a00; d1 += b0*a01; d0 += b1*a10; d1 += b1*a11; d0 += b2*a20; d1 += b2*a21; d0 += b3*a30; d1 += b3*a31; v_store(dst0 + n, d0); v_store(dst1 + n, d1); } #endif for( ; n < nmax; n++ ) { float b0 = bptr0[n], b1 = bptr1[n]; float b2 = bptr2[n], b3 = bptr3[n]; float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3; float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3; dst0[n] = d0; dst1[n] = d1; } } } } const Mat *a_, *b_; Mat* c_; int nstripes_; bool useAVX; bool useAVX2; bool useAVX512; }; class Col2ImInvoker : public cv::ParallelLoopBody { public: const float* data_col; const float* biasvec; int channels, height, width; int kernel_h, kernel_w; int pad_h, pad_w; int stride_h, stride_w; float* data_im; int height_col, width_col; int nstripes; bool is1x1; Col2ImInvoker() : data_col(0), biasvec(0), channels(0), height(0), width(0), kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0), height_col(0), width_col(0), nstripes(0), is1x1(0) {} static void run(const float* data_col, int channels, int height, int width, int kernel_h, int kernel_w, int pad_h, int pad_w, int stride_h, int stride_w, float* data_im, const float* biasvec, bool is1x1) { const int nstripes = getNumThreads(); Col2ImInvoker t; t.data_col = data_col; t.data_im = data_im; t.channels = channels; t.height = height; t.width = width; t.kernel_h = kernel_h; t.kernel_w = kernel_w; t.pad_h = pad_h; t.pad_w = pad_w; t.stride_h = stride_h; t.stride_w = stride_w; t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; t.nstripes = nstripes; t.is1x1 = is1x1; t.biasvec = biasvec; parallel_for_(Range(0, nstripes), t, nstripes); } virtual void operator ()(const Range &r) const { const float* data_col_ = data_col; float* data_im_ = data_im; int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col; int coeff_w = (1 - stride_w * height_col * width_col); size_t total = (size_t)channels * height * width; size_t stripeSize = (total + nstripes - 1)/nstripes; size_t startIndex = r.start*stripeSize; size_t endIndex = std::min(r.end*stripeSize, total); int w = (int)(startIndex % width + pad_w); int h = (int)((startIndex / width) % height + pad_h); int c = (int)(startIndex / (width * height)); int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; int h_col_end = std::min(h / stride_h + 1, height_col); int plane_size_col = height_col * width_col; int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; bool is1x1_ = is1x1; const float* biasvec_ = biasvec; for (size_t index = startIndex; index < endIndex; index++) { // compute the start and end of the output int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1; int w_col_end = std::min(w / stride_w + 1, width_col); float val; if( is1x1_ ) val = data_im_[index]; else { val = 0.f; for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col_[offset + h_col * coeff_h + w_col * coeff_w]; } } } data_im_[index] = val + biasvec_[c]; offset += plane_size_col; if( ++w >= width + pad_w ) { w = (int)((index + 1)% width + pad_w); h = (int)(((index + 1) / width) % height + pad_h); c = (int)((index + 1) / (width * height)); h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; h_col_end = std::min(h / stride_h + 1, height_col); offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; } } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { std::vector inputs; std::vector outputs; std::vector internals; inputs_.getUMatVector(inputs); outputs_.getUMatVector(outputs); internals_.getUMatVector(internals); int outCn = numOutput; int inpCn = inputs[0].size[1]; if (is1x1()) return false; if (umat_weights.empty()) { transpose(blobs[0].reshape(1, inpCn), umat_weights); umat_biases = hasBias() ? blobs[1].reshape(1, outCn).getUMat(ACCESS_READ) : UMat::zeros(outCn, 1, CV_32F); } String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type())); buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ", pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width); for (size_t ii = 0; ii < outputs.size(); ii++) { int ngroups = outCn / blobs[0].size[1]; int inpGroupCn = inpCn / ngroups; int outGroupCn = blobs[0].size[1]; const UMat& inp = inputs[ii]; UMat& out = outputs[ii]; int numImg = inp.size[0]; int inpH = inp.size[2], inpW = inp.size[3]; int outH = out.size[2], outW = out.size[3]; MatShape inpshape = shape(numImg*inpCn, inpH*inpW); MatShape outshape = shape(numImg*outCn, outH*outW); UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]); UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]); int rows = internals[0].rows / ngroups; for (int n = 0; n < numImg; n++) { for (int g = 0; g < ngroups; g++) { UMat colMat = internals[0].rowRange(_Range(g * rows, rows)); UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn)); UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn)); gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0); } for (int g = 0; g < ngroups; g++) { int total = outGroupCn * decnBlob.cols; int index = 0; int height_col = (outH + 2 * pad.height - kernel.height) / stride.height + 1; int width_col = (outW + 2 * pad.width - kernel.width) / stride.width + 1; int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col; int coeff_w = (1 - stride.width * height_col * width_col); ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt); k.set(index++, total); k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0])); k.set(index++, (int)(g * rows * internals[0].cols)); k.set(index++, outGroupCn); k.set(index++, outH); k.set(index++, outW); k.set(index++, height_col); k.set(index++, width_col); k.set(index++, coeff_h); k.set(index++, coeff_w); k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases)); k.set(index++, (int)(g * outGroupCn * umat_biases.cols)); k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob)); k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols)); size_t global[] = { (size_t)total }; bool ret = k.run(1, global, NULL, false); if (!ret) return false; } } } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs_arr, outputs_arr, internals_arr)) Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); int outCn = numOutput; int inpCn = inputs[0]->size[1]; bool is1x1flag = is1x1(); int nstripes = getNumThreads(); if( weightsMat.empty() ) { transpose(blobs[0].reshape(1, inpCn), weightsMat); biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F); } for (size_t ii = 0; ii < outputs.size(); ii++) { int ngroups = outCn / blobs[0].size[1]; int inpGroupCn = inpCn / ngroups; int outGroupCn = blobs[0].size[1]; const Mat& inp = *inputs[ii]; Mat& out = outputs[ii]; int numImg = inp.size[0]; int outH = out.size[2], outW = out.size[3]; Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn); Mat decnBlob = out.reshape(1, numImg*outCn); for (int n = 0; n < numImg; n++) { for (int g = 0; g < ngroups; g++) { Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn)); Mat &colMat = is1x1flag ? dstMat : internals[0]; Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn)); Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn)); Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn)); //gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0); MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes); parallel_for_(Range(0, nstripes), mminvoker, nstripes); Col2ImInvoker::run(colMat.ptr(), outGroupCn, outH, outW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, dstMat.ptr(), curBiasMat.ptr(), is1x1flag); } } } } virtual Ptr initHalide(const std::vector > &inputs) { #ifdef HAVE_HALIDE Halide::Buffer inputBuffer = halideBuffer(inputs[0]); int inW, inH, inC, inN; getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); const int outGroupCn = blobs[0].size[1]; const int group = numOutput / outGroupCn; const int inpGroupCn = blobs[0].size[0] / group; Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func padded_input(name + "_constant_exterior"); auto weights = wrapToHalideBuffer(blobs[0]); Halide::Func dilated_input("dilated_input"); dilated_input(x, y, c, n) = 0.0f; Halide::RDom r1(0, inW, 0, inH); dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) = inputBuffer(r1.x, r1.y, c, n); dilated_input.compute_root(); Halide::Func bounded = Halide::BoundaryConditions::constant_exterior(dilated_input, 0, 0, (inW - 1) * stride.width + 1, 0, (inH - 1) * stride.height + 1, 0, inC, 0, inN); padded_input(x, y, c, n) = bounded(x, y, c, n); Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); Halide::Expr kx = x + pad.width - r.x; Halide::Expr ky = y + pad.height - r.y; Halide::Expr kInC = r.z; Halide::Expr kOutC = c; for (int i = 1; i < group; ++i) { kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z); kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i); } Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) * weights(r.x, r.y, kOutC, kInC)); if (hasBias()) { auto bias = wrapToHalideBuffer(blobs[1], {numOutput}); topExpr += bias(c); } top(x, y, c, n) = topExpr; return Ptr(new HalideBackendNode({ padded_input, top })); #endif // HAVE_HALIDE return Ptr(); } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { CV_Assert(inputs.size() == outputs.size()); float flops = 0; int outChannels = blobs[0].size[0]; for (int i = 0; i < inputs.size(); i++) { flops += CV_BIG_INT(2)*outChannels*kernel.area()*total(inputs[i]); } return flops; } }; //Convolution and Deconvolution static void initConvDeconvLayerFromCaffe(Ptr l, const LayerParams ¶ms) { l->setParamsFrom(params); getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height, l->pad.width, l->stride.height, l->stride.width, l->dilation.height, l->dilation.width, l->padMode); l->numOutput = params.get("num_output"); int ngroups = params.get("group", 1); l->adjustPad.height = params.get("adj_h", 0); l->adjustPad.width = params.get("adj_w", 0); CV_Assert(l->numOutput % ngroups == 0); CV_Assert(l->adjustPad.width < l->stride.width && l->adjustPad.height < l->stride.height); } Ptr ConvolutionLayer::create(const LayerParams ¶ms) { ConvolutionLayerImpl* conv_ptr = new ConvolutionLayerImpl; Ptr l(conv_ptr); initConvDeconvLayerFromCaffe(l, params); #ifdef HAVE_OPENCL size_t n = params.blobs.size(); conv_ptr->umat_blobs.resize(n); for (int i = 0; i < n; i++) conv_ptr->umat_blobs[i] = params.blobs[i].getUMat(ACCESS_READ); #endif return l; } Ptr DeconvolutionLayer::create(const LayerParams ¶ms) { Ptr l(new DeConvolutionLayerImpl); initConvDeconvLayerFromCaffe(l, params); return l; } } }