#include #include #include #include using namespace cv; using namespace cv::dnn; #include #include #include #include using namespace std; const size_t network_width = 416; const size_t network_height = 416; const char* about = "This sample uses You only look once (YOLO)-Detector " "(https://arxiv.org/abs/1612.08242)" "to detect objects on image\n"; // TODO: link const char* params = "{ help | false | print usage }" "{ cfg | | model configuration }" "{ model | | model weights }" "{ image | | image for detection }" "{ min_confidence | 0.24 | min confidence }"; int main(int argc, char** argv) { cv::CommandLineParser parser(argc, argv, params); if (parser.get("help")) { std::cout << about << std::endl; parser.printMessage(); return 0; } String modelConfiguration = parser.get("cfg"); String modelBinary = parser.get("model"); //! [Initialize network] dnn::Net net = readNetFromDarknet(modelConfiguration, modelBinary); //! [Initialize network] if (net.empty()) { cerr << "Can't load network by using the following files: " << endl; cerr << "cfg-file: " << modelConfiguration << endl; cerr << "weights-file: " << modelBinary << endl; cerr << "Models can be downloaded here:" << endl; cerr << "https://pjreddie.com/darknet/yolo/" << endl; exit(-1); } cv::Mat frame = cv::imread(parser.get("image")); //! [Resizing without keeping aspect ratio] cv::Mat resized; cv::resize(frame, resized, cv::Size(network_width, network_height)); //! [Resizing without keeping aspect ratio] //! [Prepare blob] Mat inputBlob = blobFromImage(resized, 1 / 255.F); //Convert Mat to batch of images //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob, "data"); //set the network input //! [Set input blob] //! [Make forward pass] cv::Mat detectionMat = net.forward("detection_out"); //compute output //! [Make forward pass] float confidenceThreshold = parser.get("min_confidence"); for (int i = 0; i < detectionMat.rows; i++) { const int probability_index = 5; const int probability_size = detectionMat.cols - probability_index; float *prob_array_ptr = &detectionMat.at(i, probability_index); size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; float confidence = detectionMat.at(i, (int)objectClass + probability_index); if (confidence > confidenceThreshold) { float x = detectionMat.at(i, 0); float y = detectionMat.at(i, 1); float width = detectionMat.at(i, 2); float height = detectionMat.at(i, 3); float xLeftBottom = (x - width / 2) * frame.cols; float yLeftBottom = (y - height / 2) * frame.rows; float xRightTop = (x + width / 2) * frame.cols; float yRightTop = (y + height / 2) * frame.rows; std::cout << "Class: " << objectClass << std::endl; std::cout << "Confidence: " << confidence << std::endl; std::cout << " " << xLeftBottom << " " << yLeftBottom << " " << xRightTop << " " << yRightTop << std::endl; Rect object((int)xLeftBottom, (int)yLeftBottom, (int)(xRightTop - xLeftBottom), (int)(yRightTop - yLeftBottom)); rectangle(frame, object, Scalar(0, 255, 0)); } } imshow("detections", frame); waitKey(); return 0; } // main