/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include //#include #include "cuda_shared.hpp" #include "cuda_runtime.h" using namespace cv::gpu; using namespace cv::gpu::impl; __constant__ __align__(16) double scalar_d[4]; namespace mat_operators { /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// CopyTo ///////////////////////////////// /////////////////////////////////////////////////////////////////////////// template __global__ void kernel_copy_to_with_mask(T * mat_src, T * mat_dst, const unsigned char * mask, int cols, int rows, int step_mat, int step_mask, int channels) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) if (mask[y * step_mask + x / channels] != 0) { size_t idx = y * (step_mat / sizeof(T)) + x; mat_dst[idx] = mat_src[idx]; } } /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// SetTo ////////////////////////////////// /////////////////////////////////////////////////////////////////////////// template __global__ void kernel_set_to_without_mask(T * mat, int cols, int rows, int step, int channels) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) { size_t idx = y * (step / sizeof(T)) + x; mat[idx] = scalar_d[ x % channels ]; } } template __global__ void kernel_set_to_with_mask(T * mat, const unsigned char * mask, int cols, int rows, int step, int channels, int step_mask) { size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if ((x < cols * channels ) && (y < rows)) if (mask[y * step_mask + x / channels] != 0) { size_t idx = y * (step / sizeof(T)) + x; mat[idx] = scalar_d[ x % channels ]; } } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// ConvertTo //////////////////////////////// /////////////////////////////////////////////////////////////////////////// template struct ScaleTraits { __device__ static DT scale(T src, double alpha, double beta) { return (DT)__double2int_rn(alpha * src + beta); } }; template struct ScaleTraits { __device__ static float scale(T src, double alpha, double beta) { return (float)(alpha * src + beta); } }; template struct ScaleTraits { __device__ static double scale(T src, double alpha, double beta) { return alpha * src + beta; } }; template struct ReadWriteTraits { enum {shift=1}; typedef T read_type; typedef DT write_type; }; template struct ReadWriteTraits { enum {shift=4}; typedef char4 read_type; typedef char4 write_type; }; template struct ReadWriteTraits { enum {shift=4}; typedef short4 read_type; typedef char4 write_type; }; template struct ReadWriteTraits { enum {shift=4}; typedef int4 read_type; typedef char4 write_type; }; template struct ReadWriteTraits { enum {shift=2}; typedef char2 read_type; typedef short2 write_type; }; template struct ReadWriteTraits { enum {shift=2}; typedef short2 read_type; typedef short2 write_type; }; template struct ReadWriteTraits { enum {shift=2}; typedef int2 read_type; typedef short2 write_type; }; template __global__ static void kernel_convert_to(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta) { typedef typename ReadWriteTraits::read_type read_type; typedef typename ReadWriteTraits::write_type write_type; const int shift = ReadWriteTraits::shift; const size_t x = threadIdx.x + blockIdx.x * blockDim.x; const size_t y = threadIdx.y + blockIdx.y * blockDim.y; if (y < height) { const T* src = (const T*)(srcmat + src_step * y); DT* dst = (DT*)(dstmat + dst_step * y); if ((x * shift) + shift - 1 < width) { read_type srcn_el = ((read_type*)src)[x]; write_type dstn_el; const T* src1_el = (const T*) &srcn_el; DT* dst1_el = (DT*) &dstn_el; for (int i = 0; i < shift; ++i) dst1_el[i] = ScaleTraits::scale(src1_el[i], alpha, beta); ((write_type*)dst)[x] = dstn_el; } else { for (int i = 0; i < shift - 1; ++i) if ((x * shift) + i < width) dst[(x * shift) + i] = ScaleTraits::scale(src[(x * shift) + i], alpha, beta); } } } } // namespace mat_operators namespace cv { namespace gpu { namespace impl { /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// CopyTo ///////////////////////////////// /////////////////////////////////////////////////////////////////////////// typedef void (*CopyToFunc)(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels); template void copy_to_with_mask_run(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels) { dim3 threadsPerBlock(16,16, 1); dim3 numBlocks ( divUp(mat_src.cols * channels , threadsPerBlock.x) , divUp(mat_src.rows , threadsPerBlock.y), 1); ::mat_operators::kernel_copy_to_with_mask<<>> ((T*)mat_src.ptr, (T*)mat_dst.ptr, (unsigned char*)mask.ptr, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels); cudaSafeCall ( cudaThreadSynchronize() ); } extern "C" void copy_to_with_mask(const DevMem2D& mat_src, const DevMem2D& mat_dst, int depth, const DevMem2D& mask, int channels) { static CopyToFunc tab[8] = { copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, copy_to_with_mask_run, 0 }; CopyToFunc func = tab[depth]; if (func == 0) error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__); func(mat_src, mat_dst, mask, channels); } /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// SetTo ////////////////////////////////// /////////////////////////////////////////////////////////////////////////// typedef void (*SetToFunc_with_mask)(const DevMem2D& mat, const DevMem2D& mask, int channels); typedef void (*SetToFunc_without_mask)(const DevMem2D& mat, int channels); template void set_to_with_mask_run(const DevMem2D& mat, const DevMem2D& mask, int channels) { dim3 threadsPerBlock(32, 8, 1); dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1); ::mat_operators::kernel_set_to_with_mask<<>>((T*)mat.ptr, (unsigned char *)mask.ptr, mat.cols, mat.rows, mat.step, channels, mask.step); cudaSafeCall ( cudaThreadSynchronize() ); } template void set_to_without_mask_run(const DevMem2D& mat, int channels) { dim3 threadsPerBlock(32, 8, 1); dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1); ::mat_operators::kernel_set_to_without_mask<<>>((T*)mat.ptr, mat.cols, mat.rows, mat.step, channels); cudaSafeCall ( cudaThreadSynchronize() ); } extern "C" void set_to_without_mask(const DevMem2D& mat, int depth, const double * scalar, int channels) { double data[4]; data[0] = scalar[0]; data[1] = scalar[1]; data[2] = scalar[2]; data[3] = scalar[3]; cudaSafeCall( cudaMemcpyToSymbol(scalar_d, &data, sizeof(data))); static SetToFunc_without_mask tab[8] = { set_to_without_mask_run, set_to_without_mask_run, set_to_without_mask_run, set_to_without_mask_run, set_to_without_mask_run, set_to_without_mask_run, set_to_without_mask_run, 0 }; SetToFunc_without_mask func = tab[depth]; if (func == 0) error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__); func(mat, channels); } extern "C" void set_to_with_mask(const DevMem2D& mat, int depth, const double * scalar, const DevMem2D& mask, int channels) { double data[4]; data[0] = scalar[0]; data[1] = scalar[1]; data[2] = scalar[2]; data[3] = scalar[3]; cudaSafeCall( cudaMemcpyToSymbol(scalar_d, &data, sizeof(data))); static SetToFunc_with_mask tab[8] = { set_to_with_mask_run, set_to_with_mask_run, set_to_with_mask_run, set_to_with_mask_run, set_to_with_mask_run, set_to_with_mask_run, set_to_with_mask_run, 0 }; SetToFunc_with_mask func = tab[depth]; if (func == 0) error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__); func(mat, mask, channels); } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// ConvertTo //////////////////////////////// /////////////////////////////////////////////////////////////////////////// typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta); template void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta) { const int shift = ::mat_operators::ReadWriteTraits::shift; dim3 block(32, 8); dim3 grid(divUp(width, block.x * shift), divUp(height, block.y)); ::mat_operators::kernel_convert_to<<>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta); cudaSafeCall( cudaThreadSynchronize() ); } extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta) { static CvtFunc tab[8][8] = { {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, cvt_, 0}, {0,0,0,0,0,0,0,0} }; CvtFunc func = tab[sdepth][ddepth]; if (func == 0) cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__); func(src, dst, width, height, alpha, beta); } } // namespace impl } // namespace gpu } // namespace cv