mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
f87e1efd2a
libjpeg upgrade to version 9f #25092 Upgrade libjpeg dependency from version 9d to 9f. - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
1657 lines
50 KiB
C
1657 lines
50 KiB
C
/*
|
|
* jchuff.c
|
|
*
|
|
* Copyright (C) 1991-1997, Thomas G. Lane.
|
|
* Modified 2006-2023 by Guido Vollbeding.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains Huffman entropy encoding routines.
|
|
* Both sequential and progressive modes are supported in this single module.
|
|
*
|
|
* Much of the complexity here has to do with supporting output suspension.
|
|
* If the data destination module demands suspension, we want to be able to
|
|
* back up to the start of the current MCU. To do this, we copy state
|
|
* variables into local working storage, and update them back to the
|
|
* permanent JPEG objects only upon successful completion of an MCU.
|
|
*
|
|
* We do not support output suspension for the progressive JPEG mode, since
|
|
* the library currently does not allow multiple-scan files to be written
|
|
* with output suspension.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
|
|
|
|
/* The legal range of a DCT coefficient is
|
|
* -1024 .. +1023 for 8-bit sample data precision;
|
|
* -16384 .. +16383 for 12-bit sample data precision.
|
|
* Hence the magnitude should always fit in sample data precision + 2 bits.
|
|
*/
|
|
|
|
/* Derived data constructed for each Huffman table */
|
|
|
|
typedef struct {
|
|
unsigned int ehufco[256]; /* code for each symbol */
|
|
char ehufsi[256]; /* length of code for each symbol */
|
|
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
|
|
} c_derived_tbl;
|
|
|
|
|
|
/* Expanded entropy encoder object for Huffman encoding.
|
|
*
|
|
* The savable_state subrecord contains fields that change within an MCU,
|
|
* but must not be updated permanently until we complete the MCU.
|
|
*/
|
|
|
|
typedef struct {
|
|
INT32 put_buffer; /* current bit-accumulation buffer */
|
|
int put_bits; /* # of bits now in it */
|
|
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
} savable_state;
|
|
|
|
/* This macro is to work around compilers with missing or broken
|
|
* structure assignment. You'll need to fix this code if you have
|
|
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
|
*/
|
|
|
|
#ifndef NO_STRUCT_ASSIGN
|
|
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
|
#else
|
|
#if MAX_COMPS_IN_SCAN == 4
|
|
#define ASSIGN_STATE(dest,src) \
|
|
((dest).put_buffer = (src).put_buffer, \
|
|
(dest).put_bits = (src).put_bits, \
|
|
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
|
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
|
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
|
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
|
#endif
|
|
#endif
|
|
|
|
|
|
typedef struct {
|
|
struct jpeg_entropy_encoder pub; /* public fields */
|
|
|
|
savable_state saved; /* Bit buffer & DC state at start of MCU */
|
|
|
|
/* These fields are NOT loaded into local working state. */
|
|
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
int next_restart_num; /* next restart number to write (0-7) */
|
|
|
|
/* Pointers to derived tables (these workspaces have image lifespan) */
|
|
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
|
|
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
|
|
|
|
/* Statistics tables for optimization */
|
|
long * dc_count_ptrs[NUM_HUFF_TBLS];
|
|
long * ac_count_ptrs[NUM_HUFF_TBLS];
|
|
|
|
/* Following fields used only in progressive mode */
|
|
|
|
/* Mode flag: TRUE for optimization, FALSE for actual data output */
|
|
boolean gather_statistics;
|
|
|
|
/* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
|
|
*/
|
|
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
|
|
|
|
/* Coding status for AC components */
|
|
int ac_tbl_no; /* the table number of the single component */
|
|
unsigned int EOBRUN; /* run length of EOBs */
|
|
unsigned int BE; /* # of buffered correction bits before MCU */
|
|
char * bit_buffer; /* buffer for correction bits (1 per char) */
|
|
/* packing correction bits tightly would save some space but cost time... */
|
|
} huff_entropy_encoder;
|
|
|
|
typedef huff_entropy_encoder * huff_entropy_ptr;
|
|
|
|
/* Working state while writing an MCU (sequential mode).
|
|
* This struct contains all the fields that are needed by subroutines.
|
|
*/
|
|
|
|
typedef struct {
|
|
JOCTET * next_output_byte; /* => next byte to write in buffer */
|
|
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
|
|
savable_state cur; /* Current bit buffer & DC state */
|
|
j_compress_ptr cinfo; /* dump_buffer needs access to this */
|
|
} working_state;
|
|
|
|
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
|
|
* buffer can hold. Larger sizes may slightly improve compression, but
|
|
* 1000 is already well into the realm of overkill.
|
|
* The minimum safe size is 64 bits.
|
|
*/
|
|
|
|
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
|
|
|
|
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
|
|
* We assume that int right shift is unsigned if INT32 right shift is,
|
|
* which should be safe.
|
|
*/
|
|
|
|
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
|
#define ISHIFT_TEMPS int ishift_temp;
|
|
#define IRIGHT_SHIFT(x,shft) \
|
|
((ishift_temp = (x)) < 0 ? \
|
|
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
|
|
(ishift_temp >> (shft)))
|
|
#else
|
|
#define ISHIFT_TEMPS
|
|
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Compute the derived values for a Huffman table.
|
|
* This routine also performs some validation checks on the table.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
|
|
c_derived_tbl ** pdtbl)
|
|
{
|
|
JHUFF_TBL *htbl;
|
|
c_derived_tbl *dtbl;
|
|
int p, i, l, lastp, si, maxsymbol;
|
|
char huffsize[257];
|
|
unsigned int huffcode[257];
|
|
unsigned int code;
|
|
|
|
/* Note that huffsize[] and huffcode[] are filled in code-length order,
|
|
* paralleling the order of the symbols themselves in htbl->huffval[].
|
|
*/
|
|
|
|
/* Find the input Huffman table */
|
|
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
|
|
htbl =
|
|
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
|
|
if (htbl == NULL)
|
|
htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
|
|
|
|
/* Allocate a workspace if we haven't already done so. */
|
|
if (*pdtbl == NULL)
|
|
*pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small)
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl));
|
|
dtbl = *pdtbl;
|
|
|
|
/* Figure C.1: make table of Huffman code length for each symbol */
|
|
|
|
p = 0;
|
|
for (l = 1; l <= 16; l++) {
|
|
i = (int) htbl->bits[l];
|
|
if (i < 0 || p + i > 256) /* protect against table overrun */
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
while (i--)
|
|
huffsize[p++] = (char) l;
|
|
}
|
|
huffsize[p] = 0;
|
|
lastp = p;
|
|
|
|
/* Figure C.2: generate the codes themselves */
|
|
/* We also validate that the counts represent a legal Huffman code tree. */
|
|
|
|
code = 0;
|
|
si = huffsize[0];
|
|
p = 0;
|
|
while (huffsize[p]) {
|
|
while (((int) huffsize[p]) == si) {
|
|
huffcode[p++] = code;
|
|
code++;
|
|
}
|
|
/* code is now 1 more than the last code used for codelength si; but
|
|
* it must still fit in si bits, since no code is allowed to be all ones.
|
|
*/
|
|
if (((INT32) code) >= (((INT32) 1) << si))
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
code <<= 1;
|
|
si++;
|
|
}
|
|
|
|
/* Figure C.3: generate encoding tables */
|
|
/* These are code and size indexed by symbol value */
|
|
|
|
/* Set all codeless symbols to have code length 0;
|
|
* this lets us detect duplicate VAL entries here, and later
|
|
* allows emit_bits to detect any attempt to emit such symbols.
|
|
*/
|
|
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
|
|
|
|
/* This is also a convenient place to check for out-of-range
|
|
* and duplicated VAL entries. We allow 0..255 for AC symbols
|
|
* but only 0..15 for DC. (We could constrain them further
|
|
* based on data depth and mode, but this seems enough.)
|
|
*/
|
|
maxsymbol = isDC ? 15 : 255;
|
|
|
|
for (p = 0; p < lastp; p++) {
|
|
i = htbl->huffval[p];
|
|
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
|
|
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
|
|
dtbl->ehufco[i] = huffcode[p];
|
|
dtbl->ehufsi[i] = huffsize[p];
|
|
}
|
|
}
|
|
|
|
|
|
/* Outputting bytes to the file.
|
|
* NB: these must be called only when actually outputting,
|
|
* that is, entropy->gather_statistics == FALSE.
|
|
*/
|
|
|
|
/* Emit a byte, taking 'action' if must suspend. */
|
|
#define emit_byte_s(state,val,action) \
|
|
{ *(state)->next_output_byte++ = (JOCTET) (val); \
|
|
if (--(state)->free_in_buffer == 0) \
|
|
if (! dump_buffer_s(state)) \
|
|
{ action; } }
|
|
|
|
/* Emit a byte */
|
|
#define emit_byte_e(entropy,val) \
|
|
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
|
|
if (--(entropy)->free_in_buffer == 0) \
|
|
dump_buffer_e(entropy); }
|
|
|
|
|
|
LOCAL(boolean)
|
|
dump_buffer_s (working_state * state)
|
|
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
|
|
{
|
|
struct jpeg_destination_mgr * dest = state->cinfo->dest;
|
|
|
|
if (! (*dest->empty_output_buffer) (state->cinfo))
|
|
return FALSE;
|
|
/* After a successful buffer dump, must reset buffer pointers */
|
|
state->next_output_byte = dest->next_output_byte;
|
|
state->free_in_buffer = dest->free_in_buffer;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
dump_buffer_e (huff_entropy_ptr entropy)
|
|
/* Empty the output buffer; we do not support suspension in this case. */
|
|
{
|
|
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
|
|
|
|
if (! (*dest->empty_output_buffer) (entropy->cinfo))
|
|
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
|
|
/* After a successful buffer dump, must reset buffer pointers */
|
|
entropy->next_output_byte = dest->next_output_byte;
|
|
entropy->free_in_buffer = dest->free_in_buffer;
|
|
}
|
|
|
|
|
|
/* Outputting bits to the file */
|
|
|
|
/* Only the right 24 bits of put_buffer are used; the valid bits are
|
|
* left-justified in this part. At most 16 bits can be passed to emit_bits
|
|
* in one call, and we never retain more than 7 bits in put_buffer
|
|
* between calls, so 24 bits are sufficient.
|
|
*/
|
|
|
|
INLINE
|
|
LOCAL(boolean)
|
|
emit_bits_s (working_state * state, unsigned int code, int size)
|
|
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
|
|
{
|
|
/* This routine is heavily used, so it's worth coding tightly. */
|
|
register INT32 put_buffer;
|
|
register int put_bits;
|
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */
|
|
if (size == 0)
|
|
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
|
|
|
|
/* mask off any extra bits in code */
|
|
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
|
|
|
|
/* new number of bits in buffer */
|
|
put_bits = size + state->cur.put_bits;
|
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
|
|
|
/* and merge with old buffer contents */
|
|
put_buffer |= state->cur.put_buffer;
|
|
|
|
while (put_bits >= 8) {
|
|
int c = (int) ((put_buffer >> 16) & 0xFF);
|
|
|
|
emit_byte_s(state, c, return FALSE);
|
|
if (c == 0xFF) { /* need to stuff a zero byte? */
|
|
emit_byte_s(state, 0, return FALSE);
|
|
}
|
|
put_buffer <<= 8;
|
|
put_bits -= 8;
|
|
}
|
|
|
|
state->cur.put_buffer = put_buffer; /* update state variables */
|
|
state->cur.put_bits = put_bits;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
INLINE
|
|
LOCAL(void)
|
|
emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
|
|
/* Emit some bits, unless we are in gather mode */
|
|
{
|
|
/* This routine is heavily used, so it's worth coding tightly. */
|
|
register INT32 put_buffer;
|
|
register int put_bits;
|
|
|
|
/* if size is 0, caller used an invalid Huffman table entry */
|
|
if (size == 0)
|
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
|
|
if (entropy->gather_statistics)
|
|
return; /* do nothing if we're only getting stats */
|
|
|
|
/* mask off any extra bits in code */
|
|
put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
|
|
|
|
/* new number of bits in buffer */
|
|
put_bits = size + entropy->saved.put_bits;
|
|
|
|
put_buffer <<= 24 - put_bits; /* align incoming bits */
|
|
|
|
/* and merge with old buffer contents */
|
|
put_buffer |= entropy->saved.put_buffer;
|
|
|
|
while (put_bits >= 8) {
|
|
int c = (int) ((put_buffer >> 16) & 0xFF);
|
|
|
|
emit_byte_e(entropy, c);
|
|
if (c == 0xFF) { /* need to stuff a zero byte? */
|
|
emit_byte_e(entropy, 0);
|
|
}
|
|
put_buffer <<= 8;
|
|
put_bits -= 8;
|
|
}
|
|
|
|
entropy->saved.put_buffer = put_buffer; /* update variables */
|
|
entropy->saved.put_bits = put_bits;
|
|
}
|
|
|
|
|
|
LOCAL(boolean)
|
|
flush_bits_s (working_state * state)
|
|
{
|
|
if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
|
|
return FALSE;
|
|
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
|
|
state->cur.put_bits = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
flush_bits_e (huff_entropy_ptr entropy)
|
|
{
|
|
emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
|
|
entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
|
|
entropy->saved.put_bits = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit (or just count) a Huffman symbol.
|
|
*/
|
|
|
|
INLINE
|
|
LOCAL(void)
|
|
emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
|
{
|
|
if (entropy->gather_statistics)
|
|
entropy->dc_count_ptrs[tbl_no][symbol]++;
|
|
else {
|
|
c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
|
|
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
|
}
|
|
}
|
|
|
|
|
|
INLINE
|
|
LOCAL(void)
|
|
emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
|
|
{
|
|
if (entropy->gather_statistics)
|
|
entropy->ac_count_ptrs[tbl_no][symbol]++;
|
|
else {
|
|
c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
|
|
emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit bits from a correction bit buffer.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
|
|
unsigned int nbits)
|
|
{
|
|
if (entropy->gather_statistics)
|
|
return; /* no real work */
|
|
|
|
while (nbits > 0) {
|
|
emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
|
|
bufstart++;
|
|
nbits--;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit any pending EOBRUN symbol.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
emit_eobrun (huff_entropy_ptr entropy)
|
|
{
|
|
register int temp, nbits;
|
|
|
|
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
|
|
temp = entropy->EOBRUN;
|
|
nbits = 0;
|
|
while ((temp >>= 1))
|
|
nbits++;
|
|
/* safety check: shouldn't happen given limited correction-bit buffer */
|
|
if (nbits > 14)
|
|
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
|
|
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
|
|
if (nbits)
|
|
emit_bits_e(entropy, entropy->EOBRUN, nbits);
|
|
|
|
entropy->EOBRUN = 0;
|
|
|
|
/* Emit any buffered correction bits */
|
|
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
|
|
entropy->BE = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Emit a restart marker & resynchronize predictions.
|
|
*/
|
|
|
|
LOCAL(boolean)
|
|
emit_restart_s (working_state * state, int restart_num)
|
|
{
|
|
int ci;
|
|
|
|
if (! flush_bits_s(state))
|
|
return FALSE;
|
|
|
|
emit_byte_s(state, 0xFF, return FALSE);
|
|
emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
|
|
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
|
|
state->cur.last_dc_val[ci] = 0;
|
|
|
|
/* The restart counter is not updated until we successfully write the MCU. */
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
LOCAL(void)
|
|
emit_restart_e (huff_entropy_ptr entropy, int restart_num)
|
|
{
|
|
int ci;
|
|
|
|
emit_eobrun(entropy);
|
|
|
|
if (! entropy->gather_statistics) {
|
|
flush_bits_e(entropy);
|
|
emit_byte_e(entropy, 0xFF);
|
|
emit_byte_e(entropy, JPEG_RST0 + restart_num);
|
|
}
|
|
|
|
if (entropy->cinfo->Ss == 0) {
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
|
|
entropy->saved.last_dc_val[ci] = 0;
|
|
} else {
|
|
/* Re-initialize all AC-related fields to 0 */
|
|
entropy->EOBRUN = 0;
|
|
entropy->BE = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for DC initial scan (either spectral selection,
|
|
* or first pass of successive approximation).
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
register int temp, temp2;
|
|
register int nbits;
|
|
int max_coef_bits;
|
|
int blkn, ci, tbl;
|
|
ISHIFT_TEMPS
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart_e(entropy, entropy->next_restart_num);
|
|
|
|
/* Since we're encoding a difference, the range limit is twice as much. */
|
|
max_coef_bits = cinfo->data_precision + 3;
|
|
|
|
/* Encode the MCU data blocks */
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
|
|
|
|
/* Compute the DC value after the required point transform by Al.
|
|
* This is simply an arithmetic right shift.
|
|
*/
|
|
temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
|
|
|
|
/* DC differences are figured on the point-transformed values. */
|
|
if ((temp2 = temp - entropy->saved.last_dc_val[ci]) == 0) {
|
|
/* Count/emit the Huffman-coded symbol for the number of bits */
|
|
emit_dc_symbol(entropy, tbl, 0);
|
|
|
|
continue;
|
|
}
|
|
|
|
entropy->saved.last_dc_val[ci] = temp;
|
|
|
|
/* Encode the DC coefficient difference per section G.1.2.1 */
|
|
if ((temp = temp2) < 0) {
|
|
temp = -temp; /* temp is abs value of input */
|
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
|
/* This code assumes we are on a two's complement machine */
|
|
temp2--;
|
|
}
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values */
|
|
if (nbits > max_coef_bits)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count/emit the Huffman-coded symbol for the number of bits */
|
|
emit_dc_symbol(entropy, tbl, nbits);
|
|
|
|
/* Emit that number of bits of the value, if positive, */
|
|
/* or the complement of its magnitude, if negative. */
|
|
emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for AC initial scan (either spectral selection,
|
|
* or first pass of successive approximation).
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
const int * natural_order;
|
|
JBLOCKROW block;
|
|
register int temp, temp2;
|
|
register int nbits;
|
|
register int r, k;
|
|
int Se, Al, max_coef_bits;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart_e(entropy, entropy->next_restart_num);
|
|
|
|
Se = cinfo->Se;
|
|
Al = cinfo->Al;
|
|
natural_order = cinfo->natural_order;
|
|
max_coef_bits = cinfo->data_precision + 2;
|
|
|
|
/* Encode the MCU data block */
|
|
block = MCU_data[0];
|
|
|
|
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
|
|
for (k = cinfo->Ss; k <= Se; k++) {
|
|
if ((temp = (*block)[natural_order[k]]) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
/* We must apply the point transform by Al. For AC coefficients this
|
|
* is an integer division with rounding towards 0. To do this portably
|
|
* in C, we shift after obtaining the absolute value; so the code is
|
|
* interwoven with finding the abs value (temp) and output bits (temp2).
|
|
*/
|
|
if (temp < 0) {
|
|
temp = -temp; /* temp is abs value of input */
|
|
/* Apply the point transform, and watch out for case */
|
|
/* that nonzero coef is zero after point transform. */
|
|
if ((temp >>= Al) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
|
temp2 = ~temp;
|
|
} else {
|
|
/* Apply the point transform, and watch out for case */
|
|
/* that nonzero coef is zero after point transform. */
|
|
if ((temp >>= Al) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
temp2 = temp;
|
|
}
|
|
|
|
/* Emit any pending EOBRUN */
|
|
if (entropy->EOBRUN > 0)
|
|
emit_eobrun(entropy);
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
|
while (r > 15) {
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
|
r -= 16;
|
|
}
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values */
|
|
if (nbits > max_coef_bits)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
|
|
|
|
/* Emit that number of bits of the value, if positive, */
|
|
/* or the complement of its magnitude, if negative. */
|
|
emit_bits_e(entropy, (unsigned int) temp2, nbits);
|
|
|
|
r = 0; /* reset zero run length */
|
|
}
|
|
|
|
if (r > 0) { /* If there are trailing zeroes, */
|
|
entropy->EOBRUN++; /* count an EOB */
|
|
if (entropy->EOBRUN == 0x7FFF)
|
|
emit_eobrun(entropy); /* force it out to avoid overflow */
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for DC successive approximation refinement scan.
|
|
* Note: we assume such scans can be multi-component,
|
|
* although the spec is not very clear on the point.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
int Al, blkn;
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart_e(entropy, entropy->next_restart_num);
|
|
|
|
Al = cinfo->Al;
|
|
|
|
/* Encode the MCU data blocks */
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
/* We simply emit the Al'th bit of the DC coefficient value. */
|
|
emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* MCU encoding for AC successive approximation refinement scan.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
const int * natural_order;
|
|
JBLOCKROW block;
|
|
register int temp;
|
|
register int r, k;
|
|
int Se, Al;
|
|
int EOB;
|
|
char *BR_buffer;
|
|
unsigned int BR;
|
|
int absvalues[DCTSIZE2];
|
|
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval)
|
|
if (entropy->restarts_to_go == 0)
|
|
emit_restart_e(entropy, entropy->next_restart_num);
|
|
|
|
Se = cinfo->Se;
|
|
Al = cinfo->Al;
|
|
natural_order = cinfo->natural_order;
|
|
|
|
/* Encode the MCU data block */
|
|
block = MCU_data[0];
|
|
|
|
/* It is convenient to make a pre-pass to determine the transformed
|
|
* coefficients' absolute values and the EOB position.
|
|
*/
|
|
EOB = 0;
|
|
for (k = cinfo->Ss; k <= Se; k++) {
|
|
temp = (*block)[natural_order[k]];
|
|
/* We must apply the point transform by Al. For AC coefficients this
|
|
* is an integer division with rounding towards 0. To do this portably
|
|
* in C, we shift after obtaining the absolute value.
|
|
*/
|
|
if (temp < 0)
|
|
temp = -temp; /* temp is abs value of input */
|
|
temp >>= Al; /* apply the point transform */
|
|
absvalues[k] = temp; /* save abs value for main pass */
|
|
if (temp == 1)
|
|
EOB = k; /* EOB = index of last newly-nonzero coef */
|
|
}
|
|
|
|
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
BR = 0; /* BR = count of buffered bits added now */
|
|
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
|
|
|
|
for (k = cinfo->Ss; k <= Se; k++) {
|
|
if ((temp = absvalues[k]) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
|
|
/* Emit any required ZRLs, but not if they can be folded into EOB */
|
|
while (r > 15 && k <= EOB) {
|
|
/* emit any pending EOBRUN and the BE correction bits */
|
|
emit_eobrun(entropy);
|
|
/* Emit ZRL */
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
|
|
r -= 16;
|
|
/* Emit buffered correction bits that must be associated with ZRL */
|
|
emit_buffered_bits(entropy, BR_buffer, BR);
|
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
|
BR = 0;
|
|
}
|
|
|
|
/* If the coef was previously nonzero, it only needs a correction bit.
|
|
* NOTE: a straight translation of the spec's figure G.7 would suggest
|
|
* that we also need to test r > 15. But if r > 15, we can only get here
|
|
* if k > EOB, which implies that this coefficient is not 1.
|
|
*/
|
|
if (temp > 1) {
|
|
/* The correction bit is the next bit of the absolute value. */
|
|
BR_buffer[BR++] = (char) (temp & 1);
|
|
continue;
|
|
}
|
|
|
|
/* Emit any pending EOBRUN and the BE correction bits */
|
|
emit_eobrun(entropy);
|
|
|
|
/* Count/emit Huffman symbol for run length / number of bits */
|
|
emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
|
|
|
|
/* Emit output bit for newly-nonzero coef */
|
|
temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
|
|
emit_bits_e(entropy, (unsigned int) temp, 1);
|
|
|
|
/* Emit buffered correction bits that must be associated with this code */
|
|
emit_buffered_bits(entropy, BR_buffer, BR);
|
|
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
|
|
BR = 0;
|
|
r = 0; /* reset zero run length */
|
|
}
|
|
|
|
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
|
|
entropy->EOBRUN++; /* count an EOB */
|
|
entropy->BE += BR; /* concat my correction bits to older ones */
|
|
/* We force out the EOB if we risk either:
|
|
* 1. overflow of the EOB counter;
|
|
* 2. overflow of the correction bit buffer during the next MCU.
|
|
*/
|
|
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
|
|
emit_eobrun(entropy);
|
|
}
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Encode a single block's worth of coefficients */
|
|
|
|
LOCAL(boolean)
|
|
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
|
|
c_derived_tbl *dctbl, c_derived_tbl *actbl)
|
|
{
|
|
register int temp, temp2;
|
|
register int nbits;
|
|
register int r, k;
|
|
int Se = state->cinfo->lim_Se;
|
|
int max_coef_bits = state->cinfo->data_precision + 3;
|
|
const int * natural_order = state->cinfo->natural_order;
|
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
|
|
|
if ((temp = block[0] - last_dc_val) == 0) {
|
|
/* Emit the Huffman-coded symbol for the number of bits */
|
|
if (! emit_bits_s(state, dctbl->ehufco[0], dctbl->ehufsi[0]))
|
|
return FALSE;
|
|
} else {
|
|
if ((temp2 = temp) < 0) {
|
|
temp = -temp; /* temp is abs value of input */
|
|
/* For a negative input, want temp2 = bitwise complement of abs(input) */
|
|
/* This code assumes we are on a two's complement machine */
|
|
temp2--;
|
|
}
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values.
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
|
*/
|
|
if (nbits > max_coef_bits)
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Emit the Huffman-coded symbol for the number of bits */
|
|
if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
|
|
return FALSE;
|
|
|
|
/* Emit that number of bits of the value, if positive, */
|
|
/* or the complement of its magnitude, if negative. */
|
|
if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
|
|
for (k = 1; k <= Se; k++) {
|
|
if ((temp = block[natural_order[k]]) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
|
while (r > 15) {
|
|
if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
|
|
return FALSE;
|
|
r -= 16;
|
|
}
|
|
|
|
if ((temp2 = temp) < 0) {
|
|
temp = -temp; /* temp is abs value of input */
|
|
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
|
|
/* This code assumes we are on a two's complement machine */
|
|
temp2--;
|
|
}
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values.
|
|
* Use ">=" instead of ">" so can use the
|
|
* same one larger limit from DC check here.
|
|
*/
|
|
if (nbits >= max_coef_bits)
|
|
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Emit Huffman symbol for run length / number of bits */
|
|
temp = (r << 4) + nbits;
|
|
if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
|
|
return FALSE;
|
|
|
|
/* Emit that number of bits of the value, if positive, */
|
|
/* or the complement of its magnitude, if negative. */
|
|
if (! emit_bits_s(state, (unsigned int) temp2, nbits))
|
|
return FALSE;
|
|
|
|
r = 0; /* reset zero run length */
|
|
}
|
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
|
if (r > 0)
|
|
if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Encode and output one MCU's worth of Huffman-compressed coefficients.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
working_state state;
|
|
int blkn, ci;
|
|
jpeg_component_info * compptr;
|
|
|
|
/* Load up working state */
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
|
ASSIGN_STATE(state.cur, entropy->saved);
|
|
state.cinfo = cinfo;
|
|
|
|
/* Emit restart marker if needed */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0)
|
|
if (! emit_restart_s(&state, entropy->next_restart_num))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Encode the MCU data blocks */
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
if (! encode_one_block(&state,
|
|
MCU_data[blkn][0], state.cur.last_dc_val[ci],
|
|
entropy->dc_derived_tbls[compptr->dc_tbl_no],
|
|
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
|
|
return FALSE;
|
|
/* Update last_dc_val */
|
|
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
|
|
}
|
|
|
|
/* Completed MCU, so update state */
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
|
ASSIGN_STATE(entropy->saved, state.cur);
|
|
|
|
/* Update restart-interval state too */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num++;
|
|
entropy->next_restart_num &= 7;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up at the end of a Huffman-compressed scan.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_huff (j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
working_state state;
|
|
|
|
if (cinfo->progressive_mode) {
|
|
entropy->next_output_byte = cinfo->dest->next_output_byte;
|
|
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
|
|
|
|
/* Flush out any buffered data */
|
|
emit_eobrun(entropy);
|
|
flush_bits_e(entropy);
|
|
|
|
cinfo->dest->next_output_byte = entropy->next_output_byte;
|
|
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
|
|
} else {
|
|
/* Load up working state ... flush_bits needs it */
|
|
state.next_output_byte = cinfo->dest->next_output_byte;
|
|
state.free_in_buffer = cinfo->dest->free_in_buffer;
|
|
ASSIGN_STATE(state.cur, entropy->saved);
|
|
state.cinfo = cinfo;
|
|
|
|
/* Flush out the last data */
|
|
if (! flush_bits_s(&state))
|
|
ERREXIT(cinfo, JERR_CANT_SUSPEND);
|
|
|
|
/* Update state */
|
|
cinfo->dest->next_output_byte = state.next_output_byte;
|
|
cinfo->dest->free_in_buffer = state.free_in_buffer;
|
|
ASSIGN_STATE(entropy->saved, state.cur);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Huffman coding optimization.
|
|
*
|
|
* We first scan the supplied data and count the number of uses of each symbol
|
|
* that is to be Huffman-coded. (This process MUST agree with the code above.)
|
|
* Then we build a Huffman coding tree for the observed counts.
|
|
* Symbols which are not needed at all for the particular image are not
|
|
* assigned any code, which saves space in the DHT marker as well as in
|
|
* the compressed data.
|
|
*/
|
|
|
|
|
|
/* Process a single block's worth of coefficients */
|
|
|
|
LOCAL(void)
|
|
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
|
|
long dc_counts[], long ac_counts[])
|
|
{
|
|
register int temp;
|
|
register int nbits;
|
|
register int r, k;
|
|
int Se = cinfo->lim_Se;
|
|
int max_coef_bits = cinfo->data_precision + 3;
|
|
const int * natural_order = cinfo->natural_order;
|
|
|
|
/* Encode the DC coefficient difference per section F.1.2.1 */
|
|
|
|
if ((temp = block[0] - last_dc_val) == 0) {
|
|
/* Count the Huffman symbol for the number of bits */
|
|
dc_counts[0]++;
|
|
} else {
|
|
if (temp < 0)
|
|
temp = -temp; /* temp is abs value of input */
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values.
|
|
* Since we're encoding a difference, the range limit is twice as much.
|
|
*/
|
|
if (nbits > max_coef_bits)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count the Huffman symbol for the number of bits */
|
|
dc_counts[nbits]++;
|
|
}
|
|
|
|
/* Encode the AC coefficients per section F.1.2.2 */
|
|
|
|
r = 0; /* r = run length of zeros */
|
|
|
|
for (k = 1; k <= Se; k++) {
|
|
if ((temp = block[natural_order[k]]) == 0) {
|
|
r++;
|
|
continue;
|
|
}
|
|
|
|
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
|
|
while (r > 15) {
|
|
ac_counts[0xF0]++;
|
|
r -= 16;
|
|
}
|
|
|
|
if (temp < 0)
|
|
temp = -temp; /* temp is abs value of input */
|
|
|
|
/* Find the number of bits needed for the magnitude of the coefficient */
|
|
nbits = 0;
|
|
do nbits++; /* there must be at least one 1 bit */
|
|
while ((temp >>= 1));
|
|
/* Check for out-of-range coefficient values.
|
|
* Use ">=" instead of ">" so can use the
|
|
* same one larger limit from DC check here.
|
|
*/
|
|
if (nbits >= max_coef_bits)
|
|
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
|
|
|
|
/* Count Huffman symbol for run length / number of bits */
|
|
ac_counts[(r << 4) + nbits]++;
|
|
|
|
r = 0; /* reset zero run length */
|
|
}
|
|
|
|
/* If the last coef(s) were zero, emit an end-of-block code */
|
|
if (r > 0)
|
|
ac_counts[0]++;
|
|
}
|
|
|
|
|
|
/*
|
|
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
|
|
* No data is actually output, so no suspension return is possible.
|
|
*/
|
|
|
|
METHODDEF(boolean)
|
|
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
int blkn, ci;
|
|
jpeg_component_info * compptr;
|
|
|
|
/* Take care of restart intervals if needed */
|
|
if (cinfo->restart_interval) {
|
|
if (entropy->restarts_to_go == 0) {
|
|
/* Re-initialize DC predictions to 0 */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
|
entropy->saved.last_dc_val[ci] = 0;
|
|
/* Update restart state */
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
}
|
|
entropy->restarts_to_go--;
|
|
}
|
|
|
|
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
ci = cinfo->MCU_membership[blkn];
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
|
|
entropy->dc_count_ptrs[compptr->dc_tbl_no],
|
|
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
|
|
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Generate the best Huffman code table for the given counts, fill htbl.
|
|
*
|
|
* The JPEG standard requires that no symbol be assigned a codeword of all
|
|
* one bits (so that padding bits added at the end of a compressed segment
|
|
* can't look like a valid code). Because of the canonical ordering of
|
|
* codewords, this just means that there must be an unused slot in the
|
|
* longest codeword length category. Section K.2 of the JPEG spec suggests
|
|
* reserving such a slot by pretending that symbol 256 is a valid symbol
|
|
* with count 1. In theory that's not optimal; giving it count zero but
|
|
* including it in the symbol set anyway should give a better Huffman code.
|
|
* But the theoretically better code actually seems to come out worse in
|
|
* practice, because it produces more all-ones bytes (which incur stuffed
|
|
* zero bytes in the final file). In any case the difference is tiny.
|
|
*
|
|
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
|
|
* If some symbols have a very small but nonzero probability, the Huffman tree
|
|
* must be adjusted to meet the code length restriction. We currently use
|
|
* the adjustment method suggested in JPEG section K.2. This method is *not*
|
|
* optimal; it may not choose the best possible limited-length code. But
|
|
* typically only very-low-frequency symbols will be given less-than-optimal
|
|
* lengths, so the code is almost optimal. Experimental comparisons against
|
|
* an optimal limited-length-code algorithm indicate that the difference is
|
|
* microscopic --- usually less than a hundredth of a percent of total size.
|
|
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
|
|
*/
|
|
|
|
LOCAL(void)
|
|
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
|
|
{
|
|
#define MAX_CLEN 32 /* assumed maximum initial code length */
|
|
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
|
|
int codesize[257]; /* codesize[k] = code length of symbol k */
|
|
int others[257]; /* next symbol in current branch of tree */
|
|
int c1, c2, i, j;
|
|
UINT8 *p;
|
|
long v;
|
|
|
|
freq[256] = 1; /* make sure 256 has a nonzero count */
|
|
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
|
|
* that no real symbol is given code-value of all ones, because 256
|
|
* will be placed last in the largest codeword category.
|
|
* In the symbol list build procedure this element serves as sentinel
|
|
* for the zero run loop.
|
|
*/
|
|
|
|
#ifndef DONT_USE_FANCY_HUFF_OPT
|
|
|
|
/* Build list of symbols sorted in order of descending frequency */
|
|
/* This approach has several benefits (thank to John Korejwa for the idea):
|
|
* 1.
|
|
* If a codelength category is split during the length limiting procedure
|
|
* below, the feature that more frequent symbols are assigned shorter
|
|
* codewords remains valid for the adjusted code.
|
|
* 2.
|
|
* To reduce consecutive ones in a Huffman data stream (thus reducing the
|
|
* number of stuff bytes in JPEG) it is preferable to follow 0 branches
|
|
* (and avoid 1 branches) as much as possible. This is easily done by
|
|
* assigning symbols to leaves of the Huffman tree in order of decreasing
|
|
* frequency, with no secondary sort based on codelengths.
|
|
* 3.
|
|
* The symbol list can be built independently from the assignment of code
|
|
* lengths by the Huffman procedure below.
|
|
* Note: The symbol list build procedure must be performed first, because
|
|
* the Huffman procedure assigning the codelengths clobbers the frequency
|
|
* counts!
|
|
*/
|
|
|
|
/* Here we use the others array as a linked list of nonzero frequencies
|
|
* to be sorted. Already sorted elements are removed from the list.
|
|
*/
|
|
|
|
/* Building list */
|
|
|
|
/* This item does not correspond to a valid symbol frequency and is used
|
|
* as starting index.
|
|
*/
|
|
j = 256;
|
|
|
|
for (i = 0;; i++) {
|
|
if (freq[i] == 0) /* skip zero frequencies */
|
|
continue;
|
|
if (i > 255)
|
|
break;
|
|
others[j] = i; /* this symbol value */
|
|
j = i; /* previous symbol value */
|
|
}
|
|
others[j] = -1; /* mark end of list */
|
|
|
|
/* Sorting list */
|
|
|
|
p = htbl->huffval;
|
|
while ((c1 = others[256]) >= 0) {
|
|
v = freq[c1];
|
|
i = c1; /* first symbol value */
|
|
j = 256; /* pseudo symbol value for starting index */
|
|
while ((c2 = others[c1]) >= 0) {
|
|
if (freq[c2] > v) {
|
|
v = freq[c2];
|
|
i = c2; /* this symbol value */
|
|
j = c1; /* previous symbol value */
|
|
}
|
|
c1 = c2;
|
|
}
|
|
others[j] = others[i]; /* remove this symbol i from list */
|
|
*p++ = (UINT8) i;
|
|
}
|
|
|
|
#endif /* DONT_USE_FANCY_HUFF_OPT */
|
|
|
|
/* This algorithm is explained in section K.2 of the JPEG standard */
|
|
|
|
MEMZERO(bits, SIZEOF(bits));
|
|
MEMZERO(codesize, SIZEOF(codesize));
|
|
for (i = 0; i < 257; i++)
|
|
others[i] = -1; /* init links to empty */
|
|
|
|
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
|
|
|
|
for (;;) {
|
|
/* Find the smallest nonzero frequency, set c1 = its symbol */
|
|
/* In case of ties, take the larger symbol number */
|
|
c1 = -1;
|
|
v = 1000000000L;
|
|
for (i = 0; i <= 256; i++) {
|
|
if (freq[i] && freq[i] <= v) {
|
|
v = freq[i];
|
|
c1 = i;
|
|
}
|
|
}
|
|
|
|
/* Find the next smallest nonzero frequency, set c2 = its symbol */
|
|
/* In case of ties, take the larger symbol number */
|
|
c2 = -1;
|
|
v = 1000000000L;
|
|
for (i = 0; i <= 256; i++) {
|
|
if (freq[i] && freq[i] <= v && i != c1) {
|
|
v = freq[i];
|
|
c2 = i;
|
|
}
|
|
}
|
|
|
|
/* Done if we've merged everything into one frequency */
|
|
if (c2 < 0)
|
|
break;
|
|
|
|
/* Else merge the two counts/trees */
|
|
freq[c1] += freq[c2];
|
|
freq[c2] = 0;
|
|
|
|
/* Increment the codesize of everything in c1's tree branch */
|
|
codesize[c1]++;
|
|
while (others[c1] >= 0) {
|
|
c1 = others[c1];
|
|
codesize[c1]++;
|
|
}
|
|
|
|
others[c1] = c2; /* chain c2 onto c1's tree branch */
|
|
|
|
/* Increment the codesize of everything in c2's tree branch */
|
|
codesize[c2]++;
|
|
while (others[c2] >= 0) {
|
|
c2 = others[c2];
|
|
codesize[c2]++;
|
|
}
|
|
}
|
|
|
|
/* Now count the number of symbols of each code length */
|
|
for (i = 0; i <= 256; i++) {
|
|
if (codesize[i]) {
|
|
/* The JPEG standard seems to think that this can't happen, */
|
|
/* but I'm paranoid... */
|
|
if (codesize[i] > MAX_CLEN)
|
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
|
|
|
|
bits[codesize[i]]++;
|
|
}
|
|
}
|
|
|
|
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
|
|
* Huffman procedure assigned any such lengths, we must adjust the coding.
|
|
* Here is what the JPEG spec says about how this next bit works:
|
|
* Since symbols are paired for the longest Huffman code, the symbols are
|
|
* removed from this length category two at a time. The prefix for the pair
|
|
* (which is one bit shorter) is allocated to one of the pair; then,
|
|
* skipping the BITS entry for that prefix length, a code word from the next
|
|
* shortest nonzero BITS entry is converted into a prefix for two code words
|
|
* one bit longer.
|
|
*/
|
|
|
|
for (i = MAX_CLEN; i > 16; i--) {
|
|
while (bits[i] > 0) {
|
|
j = i - 2; /* find length of new prefix to be used */
|
|
while (bits[j] == 0) {
|
|
if (j == 0)
|
|
ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
|
|
j--;
|
|
}
|
|
|
|
bits[i] -= 2; /* remove two symbols */
|
|
bits[i-1]++; /* one goes in this length */
|
|
bits[j+1] += 2; /* two new symbols in this length */
|
|
bits[j]--; /* symbol of this length is now a prefix */
|
|
}
|
|
}
|
|
|
|
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
|
|
while (bits[i] == 0) /* find largest codelength still in use */
|
|
i--;
|
|
bits[i]--;
|
|
|
|
/* Return final symbol counts (only for lengths 0..16) */
|
|
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
|
|
|
|
#ifdef DONT_USE_FANCY_HUFF_OPT
|
|
|
|
/* Return a list of the symbols sorted by code length */
|
|
/* Note: Due to the codelength changes made above, it can happen
|
|
* that more frequent symbols are assigned longer codewords.
|
|
*/
|
|
p = htbl->huffval;
|
|
for (i = 1; i <= MAX_CLEN; i++) {
|
|
for (j = 0; j <= 255; j++) {
|
|
if (codesize[j] == i) {
|
|
*p++ = (UINT8) j;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* DONT_USE_FANCY_HUFF_OPT */
|
|
|
|
/* Set sent_table FALSE so updated table will be written to JPEG file. */
|
|
htbl->sent_table = FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish up a statistics-gathering pass and create the new Huffman tables.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
finish_pass_gather (j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
int ci, tbl;
|
|
jpeg_component_info * compptr;
|
|
JHUFF_TBL **htblptr;
|
|
boolean did_dc[NUM_HUFF_TBLS];
|
|
boolean did_ac[NUM_HUFF_TBLS];
|
|
|
|
if (cinfo->progressive_mode)
|
|
/* Flush out buffered data (all we care about is counting the EOB symbol) */
|
|
emit_eobrun(entropy);
|
|
|
|
/* It's important not to apply jpeg_gen_optimal_table more than once
|
|
* per table, because it clobbers the input frequency counts!
|
|
*/
|
|
MEMZERO(did_dc, SIZEOF(did_dc));
|
|
MEMZERO(did_ac, SIZEOF(did_ac));
|
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
/* DC needs no table for refinement scan */
|
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
|
tbl = compptr->dc_tbl_no;
|
|
if (! did_dc[tbl]) {
|
|
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
|
|
if (*htblptr == NULL)
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
|
|
did_dc[tbl] = TRUE;
|
|
}
|
|
}
|
|
/* AC needs no table when not present */
|
|
if (cinfo->Se) {
|
|
tbl = compptr->ac_tbl_no;
|
|
if (! did_ac[tbl]) {
|
|
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
|
|
if (*htblptr == NULL)
|
|
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
|
|
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
|
|
did_ac[tbl] = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize for a Huffman-compressed scan.
|
|
* If gather_statistics is TRUE, we do not output anything during the scan,
|
|
* just count the Huffman symbols used and generate Huffman code tables.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
|
|
{
|
|
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
|
|
int ci, tbl;
|
|
jpeg_component_info * compptr;
|
|
|
|
if (gather_statistics)
|
|
entropy->pub.finish_pass = finish_pass_gather;
|
|
else
|
|
entropy->pub.finish_pass = finish_pass_huff;
|
|
|
|
if (cinfo->progressive_mode) {
|
|
entropy->cinfo = cinfo;
|
|
entropy->gather_statistics = gather_statistics;
|
|
|
|
/* We assume jcmaster.c already validated the scan parameters. */
|
|
|
|
/* Select execution routine */
|
|
if (cinfo->Ah == 0) {
|
|
if (cinfo->Ss == 0)
|
|
entropy->pub.encode_mcu = encode_mcu_DC_first;
|
|
else
|
|
entropy->pub.encode_mcu = encode_mcu_AC_first;
|
|
} else {
|
|
if (cinfo->Ss == 0)
|
|
entropy->pub.encode_mcu = encode_mcu_DC_refine;
|
|
else {
|
|
entropy->pub.encode_mcu = encode_mcu_AC_refine;
|
|
/* AC refinement needs a correction bit buffer */
|
|
if (entropy->bit_buffer == NULL)
|
|
entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small)
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char));
|
|
}
|
|
}
|
|
|
|
/* Initialize AC stuff */
|
|
entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
|
|
entropy->EOBRUN = 0;
|
|
entropy->BE = 0;
|
|
} else {
|
|
if (gather_statistics)
|
|
entropy->pub.encode_mcu = encode_mcu_gather;
|
|
else
|
|
entropy->pub.encode_mcu = encode_mcu_huff;
|
|
}
|
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
/* DC needs no table for refinement scan */
|
|
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
|
|
tbl = compptr->dc_tbl_no;
|
|
if (gather_statistics) {
|
|
/* Check for invalid table index */
|
|
/* (make_c_derived_tbl does this in the other path) */
|
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
|
/* Allocate and zero the statistics tables */
|
|
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
|
|
if (entropy->dc_count_ptrs[tbl] == NULL)
|
|
entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
|
|
MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
|
|
} else {
|
|
/* Compute derived values for Huffman tables */
|
|
/* We may do this more than once for a table, but it's not expensive */
|
|
jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
|
|
& entropy->dc_derived_tbls[tbl]);
|
|
}
|
|
/* Initialize DC predictions to 0 */
|
|
entropy->saved.last_dc_val[ci] = 0;
|
|
}
|
|
/* AC needs no table when not present */
|
|
if (cinfo->Se) {
|
|
tbl = compptr->ac_tbl_no;
|
|
if (gather_statistics) {
|
|
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
|
|
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
|
|
if (entropy->ac_count_ptrs[tbl] == NULL)
|
|
entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
|
|
MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
|
|
} else {
|
|
jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
|
|
& entropy->ac_derived_tbls[tbl]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize bit buffer to empty */
|
|
entropy->saved.put_buffer = 0;
|
|
entropy->saved.put_bits = 0;
|
|
|
|
/* Initialize restart stuff */
|
|
entropy->restarts_to_go = cinfo->restart_interval;
|
|
entropy->next_restart_num = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Module initialization routine for Huffman entropy encoding.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_huff_encoder (j_compress_ptr cinfo)
|
|
{
|
|
huff_entropy_ptr entropy;
|
|
int i;
|
|
|
|
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
|
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder));
|
|
cinfo->entropy = &entropy->pub;
|
|
entropy->pub.start_pass = start_pass_huff;
|
|
|
|
/* Mark tables unallocated */
|
|
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
|
|
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
|
|
}
|
|
|
|
if (cinfo->progressive_mode)
|
|
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
|
|
}
|