mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
ec43292e1e
Found using `codespell -q 3 -S ./3rdparty -L activ,amin,ang,atleast,childs,dof,endwhile,halfs,hist,iff,nd,od,uint`
546 lines
19 KiB
C++
546 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1
|
|
|
|
#define CORE_EIGEN_ERROR_COUNT 1
|
|
#define CORE_EIGEN_ERROR_SIZE 2
|
|
#define CORE_EIGEN_ERROR_DIFF 3
|
|
#define CORE_EIGEN_ERROR_ORTHO 4
|
|
#define CORE_EIGEN_ERROR_ORDER 5
|
|
|
|
#define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column."
|
|
#define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes."
|
|
#define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required."
|
|
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
|
|
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
|
|
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in descending order."
|
|
|
|
const int COUNT_NORM_TYPES = 3;
|
|
const int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
|
|
|
|
enum TASK_TYPE_EIGEN {VALUES, VECTORS};
|
|
|
|
class Core_EigenTest: public cvtest::BaseTest
|
|
{
|
|
public:
|
|
|
|
Core_EigenTest();
|
|
~Core_EigenTest();
|
|
|
|
protected:
|
|
|
|
bool test_values(const cv::Mat& src); // complex test for eigen without vectors
|
|
bool check_full(int type); // complex test for symmetric matrix
|
|
virtual void run (int) = 0; // main testing method
|
|
|
|
protected:
|
|
|
|
float eps_val_32, eps_vec_32;
|
|
float eps_val_64, eps_vec_64;
|
|
int ntests;
|
|
|
|
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1);
|
|
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1);
|
|
bool check_pairs_order(const cv::Mat& eigen_values); // checking order of eigen values & vectors (it should be none up)
|
|
bool check_orthogonality(const cv::Mat& U); // checking is matrix of eigen vectors orthogonal
|
|
bool test_pairs(const cv::Mat& src); // complex test for eigen with vectors
|
|
|
|
void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff);
|
|
};
|
|
|
|
class Core_EigenTest_Scalar : public Core_EigenTest
|
|
{
|
|
public:
|
|
Core_EigenTest_Scalar() : Core_EigenTest() {}
|
|
~Core_EigenTest_Scalar();
|
|
|
|
virtual void run(int) = 0;
|
|
};
|
|
|
|
class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar
|
|
{
|
|
public:
|
|
Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {}
|
|
~Core_EigenTest_Scalar_32();
|
|
|
|
void run(int);
|
|
};
|
|
|
|
class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar
|
|
{
|
|
public:
|
|
Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {}
|
|
~Core_EigenTest_Scalar_64();
|
|
void run(int);
|
|
};
|
|
|
|
class Core_EigenTest_32 : public Core_EigenTest
|
|
{
|
|
public:
|
|
Core_EigenTest_32(): Core_EigenTest() {}
|
|
~Core_EigenTest_32() {}
|
|
void run(int);
|
|
};
|
|
|
|
class Core_EigenTest_64 : public Core_EigenTest
|
|
{
|
|
public:
|
|
Core_EigenTest_64(): Core_EigenTest() {}
|
|
~Core_EigenTest_64() {}
|
|
void run(int);
|
|
};
|
|
|
|
Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {}
|
|
Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {}
|
|
Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {}
|
|
|
|
void Core_EigenTest_Scalar_32::run(int)
|
|
{
|
|
for (int i = 0; i < ntests; ++i)
|
|
{
|
|
float value = cv::randu<float>();
|
|
cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value));
|
|
test_values(src);
|
|
}
|
|
}
|
|
|
|
void Core_EigenTest_Scalar_64::run(int)
|
|
{
|
|
for (int i = 0; i < ntests; ++i)
|
|
{
|
|
float value = cv::randu<float>();
|
|
cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value));
|
|
test_values(src);
|
|
}
|
|
}
|
|
|
|
void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
|
|
void Core_EigenTest_64::run(int) { check_full(CV_64FC1); }
|
|
|
|
Core_EigenTest::Core_EigenTest()
|
|
: eps_val_32(1e-3f), eps_vec_32(1e-3f),
|
|
eps_val_64(1e-4f), eps_vec_64(1e-4f), ntests(100) {}
|
|
Core_EigenTest::~Core_EigenTest() {}
|
|
|
|
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index)
|
|
{
|
|
int n = src.rows, s = sign(high_index);
|
|
if (!( (evalues.rows == n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1)))
|
|
{
|
|
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
|
|
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
|
|
std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
|
|
CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index)
|
|
{
|
|
int n = src.rows, s = sign(high_index);
|
|
int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)));
|
|
|
|
if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count))
|
|
{
|
|
std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl;
|
|
std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl;
|
|
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
|
|
CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE);
|
|
}
|
|
|
|
if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1))
|
|
{
|
|
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
|
|
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
|
|
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
|
|
CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff)
|
|
{
|
|
switch (NORM_TYPE[norm_idx])
|
|
{
|
|
case cv::NORM_L1: std::cout << "L1"; break;
|
|
case cv::NORM_L2: std::cout << "L2"; break;
|
|
case cv::NORM_INF: std::cout << "INF"; break;
|
|
default: break;
|
|
}
|
|
|
|
cout << "-criteria... " << endl;
|
|
cout << "Source size: " << src.rows << " * " << src.cols << endl;
|
|
cout << "Difference between original eigen vectors matrix and result: " << diff << endl;
|
|
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
|
|
}
|
|
|
|
bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
|
|
{
|
|
int type = U.type();
|
|
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
|
|
cv::Mat UUt; cv::mulTransposed(U, UUt, false);
|
|
|
|
cv::Mat E = Mat::eye(U.rows, U.cols, type);
|
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
|
{
|
|
double diff = cvtest::norm(UUt, E, NORM_TYPE[i] | cv::NORM_RELATIVE);
|
|
if (diff > eps_vec)
|
|
{
|
|
std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": ";
|
|
print_information(i, U, diff, eps_vec);
|
|
CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
|
|
{
|
|
switch (eigen_values.type())
|
|
{
|
|
case CV_32FC1:
|
|
{
|
|
for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
|
|
if (!(eigen_values.at<float>(i, 0) > eigen_values.at<float>(i+1, 0)))
|
|
{
|
|
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
|
|
std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl;
|
|
std::cout << endl;
|
|
CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case CV_64FC1:
|
|
{
|
|
for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
|
|
if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0)))
|
|
{
|
|
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
|
|
std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl;
|
|
std::cout << endl;
|
|
CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in descending order.");
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Core_EigenTest::test_pairs(const cv::Mat& src)
|
|
{
|
|
int type = src.type();
|
|
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
|
|
|
|
cv::Mat eigen_values, eigen_vectors;
|
|
|
|
cv::eigen(src, eigen_values, eigen_vectors);
|
|
|
|
if (!check_pair_count(src, eigen_values, eigen_vectors))
|
|
return false;
|
|
|
|
if (!check_orthogonality (eigen_vectors))
|
|
return false;
|
|
|
|
if (!check_pairs_order(eigen_values))
|
|
return false;
|
|
|
|
cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t);
|
|
|
|
// Check:
|
|
// src * eigenvector = eigenval * eigenvector
|
|
cv::Mat lhs(src.rows, src.cols, type);
|
|
cv::Mat rhs(src.rows, src.cols, type);
|
|
|
|
lhs = src*eigen_vectors_t;
|
|
|
|
for (int i = 0; i < src.cols; ++i)
|
|
{
|
|
double eigenval = 0;
|
|
switch (type)
|
|
{
|
|
case CV_32FC1: eigenval = eigen_values.at<float>(i, 0); break;
|
|
case CV_64FC1: eigenval = eigen_values.at<double>(i, 0); break;
|
|
}
|
|
cv::Mat rhs_v = eigenval * eigen_vectors_t.col(i);
|
|
rhs_v.copyTo(rhs.col(i));
|
|
}
|
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
|
{
|
|
double diff = cvtest::norm(lhs, rhs, NORM_TYPE[i] | cv::NORM_RELATIVE);
|
|
if (diff > eps_vec)
|
|
{
|
|
std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": ";
|
|
print_information(i, src, diff, eps_vec);
|
|
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Core_EigenTest::test_values(const cv::Mat& src)
|
|
{
|
|
int type = src.type();
|
|
double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64;
|
|
|
|
cv::Mat eigen_values_1, eigen_values_2, eigen_vectors;
|
|
|
|
if (!test_pairs(src)) return false;
|
|
|
|
cv::eigen(src, eigen_values_1, eigen_vectors);
|
|
cv::eigen(src, eigen_values_2);
|
|
|
|
if (!check_pair_count(src, eigen_values_2)) return false;
|
|
|
|
for (int i = 0; i < COUNT_NORM_TYPES; ++i)
|
|
{
|
|
double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i] | cv::NORM_RELATIVE);
|
|
if (diff > eps_val)
|
|
{
|
|
std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": ";
|
|
print_information(i, src, diff, eps_val);
|
|
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Core_EigenTest::check_full(int type)
|
|
{
|
|
const int MAX_DEGREE = 7;
|
|
|
|
RNG rng = cv::theRNG(); // fix the seed
|
|
|
|
for (int i = 0; i < ntests; ++i)
|
|
{
|
|
int src_size = (int)(std::pow(2.0, (rng.uniform(0, MAX_DEGREE) + 1.)));
|
|
|
|
cv::Mat src(src_size, src_size, type);
|
|
|
|
for (int j = 0; j < src.rows; ++j)
|
|
for (int k = j; k < src.cols; ++k)
|
|
if (type == CV_32FC1) src.at<float>(k, j) = src.at<float>(j, k) = cv::randu<float>();
|
|
else src.at<double>(k, j) = src.at<double>(j, k) = cv::randu<double>();
|
|
|
|
if (!test_values(src)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); }
|
|
TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); }
|
|
TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); }
|
|
TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); }
|
|
|
|
template<typename T>
|
|
static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, bool runSymmetric = false)
|
|
{
|
|
SCOPED_TRACE(runSymmetric ? "cv::eigen" : "cv::eigenNonSymmetric");
|
|
|
|
int type = traits::Type<T>::value;
|
|
const T eps = src.type() == CV_32F ? 1e-4f : 1e-6f;
|
|
|
|
Mat eigenvalues, eigenvectors, eigenvalues0;
|
|
|
|
if (runSymmetric)
|
|
{
|
|
cv::eigen(src, eigenvalues0, noArray());
|
|
cv::eigen(src, eigenvalues, eigenvectors);
|
|
}
|
|
else
|
|
{
|
|
cv::eigenNonSymmetric(src, eigenvalues0, noArray());
|
|
cv::eigenNonSymmetric(src, eigenvalues, eigenvectors);
|
|
}
|
|
#if 0
|
|
std::cout << "src = " << src << std::endl;
|
|
std::cout << "eigenvalues.t() = " << eigenvalues.t() << std::endl;
|
|
std::cout << "eigenvectors = " << eigenvectors << std::endl;
|
|
#endif
|
|
ASSERT_EQ(type, eigenvalues0.type());
|
|
ASSERT_EQ(type, eigenvalues.type());
|
|
ASSERT_EQ(type, eigenvectors.type());
|
|
|
|
ASSERT_EQ(src.rows, eigenvalues.rows);
|
|
ASSERT_EQ(eigenvalues.rows, eigenvectors.rows);
|
|
ASSERT_EQ(src.rows, eigenvectors.cols);
|
|
|
|
EXPECT_LT(cvtest::norm(eigenvalues, eigenvalues0, NORM_INF), eps);
|
|
|
|
// check definition: src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
|
|
for (int i = 0; i < src.rows; i++)
|
|
{
|
|
EXPECT_NEAR(eigenvalues.at<T>(i), expected_eigenvalues(i), eps) << "i=" << i;
|
|
Mat lhs = src*eigenvectors.row(i).t();
|
|
Mat rhs = eigenvalues.at<T>(i)*eigenvectors.row(i).t();
|
|
EXPECT_LT(cvtest::norm(lhs, rhs, NORM_INF), eps)
|
|
<< "i=" << i << " eigenvalue=" << eigenvalues.at<T>(i) << std::endl
|
|
<< "lhs=" << lhs.t() << std::endl
|
|
<< "rhs=" << rhs.t();
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void testEigenSymmetric3x3()
|
|
{
|
|
/*const*/ T values_[] = {
|
|
2, -1, 0,
|
|
-1, 2, -1,
|
|
0, -1, 2
|
|
};
|
|
Mat_<T> src(3, 3, values_);
|
|
|
|
/*const*/ T expected_eigenvalues_[] = { 3.414213562373095f, 2, 0.585786437626905f };
|
|
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
|
|
|
|
testEigen(src, expected_eigenvalues);
|
|
testEigen(src, expected_eigenvalues, true);
|
|
}
|
|
TEST(Core_EigenSymmetric, float3x3) { testEigenSymmetric3x3<float>(); }
|
|
TEST(Core_EigenSymmetric, double3x3) { testEigenSymmetric3x3<double>(); }
|
|
|
|
template<typename T>
|
|
static void testEigenSymmetric5x5()
|
|
{
|
|
/*const*/ T values_[5*5] = {
|
|
5, -1, 0, 2, 1,
|
|
-1, 4, -1, 0, 0,
|
|
0, -1, 3, 1, -1,
|
|
2, 0, 1, 4, 0,
|
|
1, 0, -1, 0, 1
|
|
};
|
|
Mat_<T> src(5, 5, values_);
|
|
|
|
/*const*/ T expected_eigenvalues_[] = { 7.028919644935684f, 4.406130784616501f, 3.73626552682258f, 1.438067799899037f, 0.390616243726198f };
|
|
Mat_<T> expected_eigenvalues(5, 1, expected_eigenvalues_);
|
|
|
|
testEigen(src, expected_eigenvalues);
|
|
testEigen(src, expected_eigenvalues, true);
|
|
}
|
|
TEST(Core_EigenSymmetric, float5x5) { testEigenSymmetric5x5<float>(); }
|
|
TEST(Core_EigenSymmetric, double5x5) { testEigenSymmetric5x5<double>(); }
|
|
|
|
|
|
template<typename T>
|
|
static void testEigen2x2()
|
|
{
|
|
/*const*/ T values_[] = { 4, 1, 6, 3 };
|
|
Mat_<T> src(2, 2, values_);
|
|
|
|
/*const*/ T expected_eigenvalues_[] = { 6, 1 };
|
|
Mat_<T> expected_eigenvalues(2, 1, expected_eigenvalues_);
|
|
|
|
testEigen(src, expected_eigenvalues);
|
|
}
|
|
TEST(Core_EigenNonSymmetric, float2x2) { testEigen2x2<float>(); }
|
|
TEST(Core_EigenNonSymmetric, double2x2) { testEigen2x2<double>(); }
|
|
|
|
template<typename T>
|
|
static void testEigen3x3()
|
|
{
|
|
/*const*/ T values_[3*3] = {
|
|
3,1,0,
|
|
0,3,1,
|
|
0,0,3
|
|
};
|
|
Mat_<T> src(3, 3, values_);
|
|
|
|
/*const*/ T expected_eigenvalues_[] = { 3, 3, 3 };
|
|
Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
|
|
|
|
testEigen(src, expected_eigenvalues);
|
|
}
|
|
TEST(Core_EigenNonSymmetric, float3x3) { testEigen3x3<float>(); }
|
|
TEST(Core_EigenNonSymmetric, double3x3) { testEigen3x3<double>(); }
|
|
|
|
typedef testing::TestWithParam<int> Core_EigenZero;
|
|
TEST_P(Core_EigenZero, double)
|
|
{
|
|
int N = GetParam();
|
|
Mat_<double> srcZero = Mat_<double>::zeros(N, N);
|
|
Mat_<double> expected_eigenvalueZero = Mat_<double>::zeros(N, 1); // 1D Mat
|
|
testEigen(srcZero, expected_eigenvalueZero);
|
|
testEigen(srcZero, expected_eigenvalueZero, true);
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(/**/, Core_EigenZero, testing::Values(2, 3, 5));
|
|
|
|
TEST(Core_EigenNonSymmetric, convergence)
|
|
{
|
|
Matx33d m(
|
|
0, -1, 0,
|
|
1, 0, 1,
|
|
0, -1, 0);
|
|
Mat eigenvalues, eigenvectors;
|
|
// eigen values are complex, algorithm doesn't converge
|
|
try
|
|
{
|
|
cv::eigenNonSymmetric(m, eigenvalues, eigenvectors);
|
|
std::cout << Mat(eigenvalues.t()) << std::endl;
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
EXPECT_EQ(Error::StsNoConv, e.code) << e.what();
|
|
}
|
|
catch (...)
|
|
{
|
|
FAIL() << "Unknown exception has been raised";
|
|
}
|
|
}
|
|
|
|
}} // namespace
|