opencv/samples/cpp/digits_svm.cpp
Quella Zhang (Beyondsoft Corporation) 5105a937d1 Add namespace specifier for format()
2021-04-21 14:08:52 +08:00

376 lines
9.5 KiB
C++

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/ml.hpp"
#include <algorithm>
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
const int SZ = 20; // size of each digit is SZ x SZ
const int CLASS_N = 10;
const char* DIGITS_FN = "digits.png";
static void help(char** argv)
{
cout <<
"\n"
"SVM and KNearest digit recognition.\n"
"\n"
"Sample loads a dataset of handwritten digits from 'digits.png'.\n"
"Then it trains a SVM and KNearest classifiers on it and evaluates\n"
"their accuracy.\n"
"\n"
"Following preprocessing is applied to the dataset:\n"
" - Moment-based image deskew (see deskew())\n"
" - Digit images are split into 4 10x10 cells and 16-bin\n"
" histogram of oriented gradients is computed for each\n"
" cell\n"
" - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))\n"
"\n"
"\n"
"[1] R. Arandjelovic, A. Zisserman\n"
" \"Three things everyone should know to improve object retrieval\"\n"
" http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf\n"
"\n"
"Usage:\n"
<< argv[0] << endl;
}
static void split2d(const Mat& image, const Size cell_size, vector<Mat>& cells)
{
int height = image.rows;
int width = image.cols;
int sx = cell_size.width;
int sy = cell_size.height;
cells.clear();
for (int i = 0; i < height; i += sy)
{
for (int j = 0; j < width; j += sx)
{
cells.push_back(image(Rect(j, i, sx, sy)));
}
}
}
static void load_digits(const char* fn, vector<Mat>& digits, vector<int>& labels)
{
digits.clear();
labels.clear();
String filename = samples::findFile(fn);
cout << "Loading " << filename << " ..." << endl;
Mat digits_img = imread(filename, IMREAD_GRAYSCALE);
split2d(digits_img, Size(SZ, SZ), digits);
for (int i = 0; i < CLASS_N; i++)
{
for (size_t j = 0; j < digits.size() / CLASS_N; j++)
{
labels.push_back(i);
}
}
}
static void deskew(const Mat& img, Mat& deskewed_img)
{
Moments m = moments(img);
if (abs(m.mu02) < 0.01)
{
deskewed_img = img.clone();
return;
}
float skew = (float)(m.mu11 / m.mu02);
float M_vals[2][3] = {{1, skew, -0.5f * SZ * skew}, {0, 1, 0}};
Mat M(Size(3, 2), CV_32F);
for (int i = 0; i < M.rows; i++)
{
for (int j = 0; j < M.cols; j++)
{
M.at<float>(i, j) = M_vals[i][j];
}
}
warpAffine(img, deskewed_img, M, Size(SZ, SZ), WARP_INVERSE_MAP | INTER_LINEAR);
}
static void mosaic(const int width, const vector<Mat>& images, Mat& grid)
{
int mat_width = SZ * width;
int mat_height = SZ * (int)ceil((double)images.size() / width);
if (!images.empty())
{
grid = Mat(Size(mat_width, mat_height), images[0].type());
for (size_t i = 0; i < images.size(); i++)
{
Mat location_on_grid = grid(Rect(SZ * ((int)i % width), SZ * ((int)i / width), SZ, SZ));
images[i].copyTo(location_on_grid);
}
}
}
static void evaluate_model(const vector<float>& predictions, const vector<Mat>& digits, const vector<int>& labels, Mat& mos)
{
double err = 0;
for (size_t i = 0; i < predictions.size(); i++)
{
if ((int)predictions[i] != labels[i])
{
err++;
}
}
err /= predictions.size();
cout << cv::format("error: %.2f %%", err * 100) << endl;
int confusion[10][10] = {};
for (size_t i = 0; i < labels.size(); i++)
{
confusion[labels[i]][(int)predictions[i]]++;
}
cout << "confusion matrix:" << endl;
for (int i = 0; i < 10; i++)
{
for (int j = 0; j < 10; j++)
{
cout << cv::format("%2d ", confusion[i][j]);
}
cout << endl;
}
cout << endl;
vector<Mat> vis;
for (size_t i = 0; i < digits.size(); i++)
{
Mat img;
cvtColor(digits[i], img, COLOR_GRAY2BGR);
if ((int)predictions[i] != labels[i])
{
for (int j = 0; j < img.rows; j++)
{
for (int k = 0; k < img.cols; k++)
{
img.at<Vec3b>(j, k)[0] = 0;
img.at<Vec3b>(j, k)[1] = 0;
}
}
}
vis.push_back(img);
}
mosaic(25, vis, mos);
}
static void bincount(const Mat& x, const Mat& weights, const int min_length, vector<double>& bins)
{
double max_x_val = 0;
minMaxLoc(x, NULL, &max_x_val);
bins = vector<double>(max((int)max_x_val, min_length));
for (int i = 0; i < x.rows; i++)
{
for (int j = 0; j < x.cols; j++)
{
bins[x.at<int>(i, j)] += weights.at<float>(i, j);
}
}
}
static void preprocess_hog(const vector<Mat>& digits, Mat& hog)
{
int bin_n = 16;
int half_cell = SZ / 2;
double eps = 1e-7;
hog = Mat(Size(4 * bin_n, (int)digits.size()), CV_32F);
for (size_t img_index = 0; img_index < digits.size(); img_index++)
{
Mat gx;
Sobel(digits[img_index], gx, CV_32F, 1, 0);
Mat gy;
Sobel(digits[img_index], gy, CV_32F, 0, 1);
Mat mag;
Mat ang;
cartToPolar(gx, gy, mag, ang);
Mat bin(ang.size(), CV_32S);
for (int i = 0; i < ang.rows; i++)
{
for (int j = 0; j < ang.cols; j++)
{
bin.at<int>(i, j) = (int)(bin_n * ang.at<float>(i, j) / (2 * CV_PI));
}
}
Mat bin_cells[] = {
bin(Rect(0, 0, half_cell, half_cell)),
bin(Rect(half_cell, 0, half_cell, half_cell)),
bin(Rect(0, half_cell, half_cell, half_cell)),
bin(Rect(half_cell, half_cell, half_cell, half_cell))
};
Mat mag_cells[] = {
mag(Rect(0, 0, half_cell, half_cell)),
mag(Rect(half_cell, 0, half_cell, half_cell)),
mag(Rect(0, half_cell, half_cell, half_cell)),
mag(Rect(half_cell, half_cell, half_cell, half_cell))
};
vector<double> hist;
hist.reserve(4 * bin_n);
for (int i = 0; i < 4; i++)
{
vector<double> partial_hist;
bincount(bin_cells[i], mag_cells[i], bin_n, partial_hist);
hist.insert(hist.end(), partial_hist.begin(), partial_hist.end());
}
// transform to Hellinger kernel
double sum = 0;
for (size_t i = 0; i < hist.size(); i++)
{
sum += hist[i];
}
for (size_t i = 0; i < hist.size(); i++)
{
hist[i] /= sum + eps;
hist[i] = sqrt(hist[i]);
}
double hist_norm = norm(hist);
for (size_t i = 0; i < hist.size(); i++)
{
hog.at<float>((int)img_index, (int)i) = (float)(hist[i] / (hist_norm + eps));
}
}
}
static void shuffle(vector<Mat>& digits, vector<int>& labels)
{
vector<int> shuffled_indexes(digits.size());
for (size_t i = 0; i < digits.size(); i++)
{
shuffled_indexes[i] = (int)i;
}
randShuffle(shuffled_indexes);
vector<Mat> shuffled_digits(digits.size());
vector<int> shuffled_labels(labels.size());
for (size_t i = 0; i < shuffled_indexes.size(); i++)
{
shuffled_digits[shuffled_indexes[i]] = digits[i];
shuffled_labels[shuffled_indexes[i]] = labels[i];
}
digits = shuffled_digits;
labels = shuffled_labels;
}
int main(int /* argc */, char* argv[])
{
help(argv);
vector<Mat> digits;
vector<int> labels;
load_digits(DIGITS_FN, digits, labels);
cout << "preprocessing..." << endl;
// shuffle digits
shuffle(digits, labels);
vector<Mat> digits2;
for (size_t i = 0; i < digits.size(); i++)
{
Mat deskewed_digit;
deskew(digits[i], deskewed_digit);
digits2.push_back(deskewed_digit);
}
Mat samples;
preprocess_hog(digits2, samples);
int train_n = (int)(0.9 * samples.rows);
Mat test_set;
vector<Mat> digits_test(digits2.begin() + train_n, digits2.end());
mosaic(25, digits_test, test_set);
imshow("test set", test_set);
Mat samples_train = samples(Rect(0, 0, samples.cols, train_n));
Mat samples_test = samples(Rect(0, train_n, samples.cols, samples.rows - train_n));
vector<int> labels_train(labels.begin(), labels.begin() + train_n);
vector<int> labels_test(labels.begin() + train_n, labels.end());
Ptr<ml::KNearest> k_nearest;
Ptr<ml::SVM> svm;
vector<float> predictions;
Mat vis;
cout << "training KNearest..." << endl;
k_nearest = ml::KNearest::create();
k_nearest->train(samples_train, ml::ROW_SAMPLE, labels_train);
// predict digits with KNearest
k_nearest->findNearest(samples_test, 4, predictions);
evaluate_model(predictions, digits_test, labels_test, vis);
imshow("KNearest test", vis);
k_nearest.release();
cout << "training SVM..." << endl;
svm = ml::SVM::create();
svm->setGamma(5.383);
svm->setC(2.67);
svm->setKernel(ml::SVM::RBF);
svm->setType(ml::SVM::C_SVC);
svm->train(samples_train, ml::ROW_SAMPLE, labels_train);
// predict digits with SVM
svm->predict(samples_test, predictions);
evaluate_model(predictions, digits_test, labels_test, vis);
imshow("SVM test", vis);
cout << "Saving SVM as \"digits_svm.yml\"..." << endl;
svm->save("digits_svm.yml");
svm.release();
waitKey();
return 0;
}