opencv/samples/directx/d3d11_interop.cpp
Biswapriyo Nath 6cf0910842
Merge pull request #22462 from Biswa96:fix-directx-check
* cmake: Fix DirectX detection in mingw

The pragma comment directive is valid for MSVC only. So, the DirectX detection
fails in mingw. The failure is fixed by adding the required linking library
(here d3d11) in the try_compile() function in OpenCVDetectDirectX.cmake file.
Also add a message if the first DirectX check fails.

* gapi: Fix compilation with mingw

These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.

* samples: Fix compilation with mingw

These changes remove MSVC specific pragma directive. The compilation fails at
linking time due to absence of proper linking library. The required libraries
are added in corresponding CMakeLists.txt file.
2022-10-03 08:37:36 +03:00

489 lines
17 KiB
C++

/*
// A sample program demonstrating interoperability of OpenCV cv::UMat with Direct X surface
// At first, the data obtained from video file or camera and placed onto Direct X surface,
// following mapping of this Direct X surface to OpenCV cv::UMat and call cv::Blur function.
// The result is mapped back to Direct X surface and rendered through Direct X API.
*/
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <d3d11.h>
#include "opencv2/core.hpp"
#include "opencv2/core/directx.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include "d3dsample.hpp"
class D3D11WinApp : public D3DSample
{
public:
D3D11WinApp(int width, int height, std::string& window_name, cv::VideoCapture& cap)
: D3DSample(width, height, window_name, cap),
m_nv12_available(false)
{}
~D3D11WinApp() {}
int create(void)
{
// base initialization
D3DSample::create();
// initialize DirectX
HRESULT r;
DXGI_SWAP_CHAIN_DESC scd;
ZeroMemory(&scd, sizeof(DXGI_SWAP_CHAIN_DESC));
scd.BufferCount = 1; // one back buffer
scd.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; // use 32-bit color
scd.BufferDesc.Width = m_width; // set the back buffer width
scd.BufferDesc.Height = m_height; // set the back buffer height
scd.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; // how swap chain is to be used
scd.OutputWindow = m_hWnd; // the window to be used
scd.SampleDesc.Count = 1; // how many multisamples
scd.Windowed = TRUE; // windowed/full-screen mode
scd.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;
scd.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // allow full-screen switching
r = ::D3D11CreateDeviceAndSwapChain(
NULL,
D3D_DRIVER_TYPE_HARDWARE,
NULL,
0,
NULL,
0,
D3D11_SDK_VERSION,
&scd,
&m_pD3D11SwapChain,
&m_pD3D11Dev,
NULL,
&m_pD3D11Ctx);
if (FAILED(r))
{
throw std::runtime_error("D3D11CreateDeviceAndSwapChain() failed!");
}
#if defined(_WIN32_WINNT_WIN8) && _WIN32_WINNT >= _WIN32_WINNT_WIN8
UINT fmt = 0;
r = m_pD3D11Dev->CheckFormatSupport(DXGI_FORMAT_NV12, &fmt);
if (SUCCEEDED(r))
{
m_nv12_available = true;
}
#endif
r = m_pD3D11SwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&m_pBackBuffer);
if (FAILED(r))
{
throw std::runtime_error("GetBuffer() failed!");
}
r = m_pD3D11Dev->CreateRenderTargetView(m_pBackBuffer, NULL, &m_pRenderTarget);
if (FAILED(r))
{
throw std::runtime_error("CreateRenderTargetView() failed!");
}
m_pD3D11Ctx->OMSetRenderTargets(1, &m_pRenderTarget, NULL);
D3D11_VIEWPORT viewport;
ZeroMemory(&viewport, sizeof(D3D11_VIEWPORT));
viewport.Width = (float)m_width;
viewport.Height = (float)m_height;
viewport.MinDepth = 0.0f;
viewport.MaxDepth = 0.0f;
m_pD3D11Ctx->RSSetViewports(1, &viewport);
m_pSurfaceRGBA = 0;
m_pSurfaceNV12 = 0;
m_pSurfaceNV12_cpu_copy = 0;
D3D11_TEXTURE2D_DESC desc_rgba;
desc_rgba.Width = m_width;
desc_rgba.Height = m_height;
desc_rgba.MipLevels = 1;
desc_rgba.ArraySize = 1;
desc_rgba.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
desc_rgba.SampleDesc.Count = 1;
desc_rgba.SampleDesc.Quality = 0;
desc_rgba.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc_rgba.Usage = D3D11_USAGE_DYNAMIC;
desc_rgba.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
desc_rgba.MiscFlags = 0;
r = m_pD3D11Dev->CreateTexture2D(&desc_rgba, 0, &m_pSurfaceRGBA);
if (FAILED(r))
{
throw std::runtime_error("Can't create DX texture");
}
#if defined(_WIN32_WINNT_WIN8) && _WIN32_WINNT >= _WIN32_WINNT_WIN8
if(m_nv12_available)
{
D3D11_TEXTURE2D_DESC desc_nv12;
desc_nv12.Width = m_width;
desc_nv12.Height = m_height;
desc_nv12.MipLevels = 1;
desc_nv12.ArraySize = 1;
desc_nv12.Format = DXGI_FORMAT_NV12;
desc_nv12.SampleDesc.Count = 1;
desc_nv12.SampleDesc.Quality = 0;
desc_nv12.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc_nv12.Usage = D3D11_USAGE_DEFAULT;
desc_nv12.CPUAccessFlags = 0;
desc_nv12.MiscFlags = D3D11_RESOURCE_MISC_SHARED;
r = m_pD3D11Dev->CreateTexture2D(&desc_nv12, 0, &m_pSurfaceNV12);
if (FAILED(r))
{
throw std::runtime_error("Can't create DX NV12 texture");
}
D3D11_TEXTURE2D_DESC desc_nv12_cpu_copy;
desc_nv12_cpu_copy.Width = m_width;
desc_nv12_cpu_copy.Height = m_height;
desc_nv12_cpu_copy.MipLevels = 1;
desc_nv12_cpu_copy.ArraySize = 1;
desc_nv12_cpu_copy.Format = DXGI_FORMAT_NV12;
desc_nv12_cpu_copy.SampleDesc.Count = 1;
desc_nv12_cpu_copy.SampleDesc.Quality = 0;
desc_nv12_cpu_copy.BindFlags = 0;
desc_nv12_cpu_copy.Usage = D3D11_USAGE_STAGING;
desc_nv12_cpu_copy.CPUAccessFlags = /*D3D11_CPU_ACCESS_WRITE | */D3D11_CPU_ACCESS_READ;
desc_nv12_cpu_copy.MiscFlags = 0;
r = m_pD3D11Dev->CreateTexture2D(&desc_nv12_cpu_copy, 0, &m_pSurfaceNV12_cpu_copy);
if (FAILED(r))
{
throw std::runtime_error("Can't create DX NV12 texture");
}
}
#endif
// initialize OpenCL context of OpenCV lib from DirectX
if (cv::ocl::haveOpenCL())
{
m_oclCtx = cv::directx::ocl::initializeContextFromD3D11Device(m_pD3D11Dev);
}
m_oclDevName = cv::ocl::useOpenCL() ?
cv::ocl::Context::getDefault().device(0).name() :
"No OpenCL device";
return EXIT_SUCCESS;
} // create()
// get media data on DX surface for further processing
int get_surface(ID3D11Texture2D** ppSurface, bool use_nv12)
{
HRESULT r;
if (!m_cap.read(m_frame_bgr))
return EXIT_FAILURE;
if (use_nv12)
{
cv::cvtColor(m_frame_bgr, m_frame_i420, cv::COLOR_BGR2YUV_I420);
convert_I420_to_NV12(m_frame_i420, m_frame_nv12, m_width, m_height);
m_pD3D11Ctx->UpdateSubresource(m_pSurfaceNV12, 0, 0, m_frame_nv12.data, (UINT)m_frame_nv12.step[0], (UINT)m_frame_nv12.total());
}
else
{
cv::cvtColor(m_frame_bgr, m_frame_rgba, cv::COLOR_BGR2RGBA);
// process video frame on CPU
UINT subResource = ::D3D11CalcSubresource(0, 0, 1);
D3D11_MAPPED_SUBRESOURCE mappedTex;
r = m_pD3D11Ctx->Map(m_pSurfaceRGBA, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex);
if (FAILED(r))
{
throw std::runtime_error("surface mapping failed!");
}
cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, mappedTex.RowPitch);
m_frame_rgba.copyTo(m);
m_pD3D11Ctx->Unmap(m_pSurfaceRGBA, subResource);
}
*ppSurface = use_nv12 ? m_pSurfaceNV12 : m_pSurfaceRGBA;
return EXIT_SUCCESS;
} // get_surface()
// process and render media data
int render()
{
try
{
if (m_shutdown)
return EXIT_SUCCESS;
// capture user input once
MODE mode = (m_mode == MODE_GPU_NV12 && !m_nv12_available) ? MODE_GPU_RGBA : m_mode;
HRESULT r;
ID3D11Texture2D* pSurface = 0;
r = get_surface(&pSurface, mode == MODE_GPU_NV12);
if (FAILED(r))
{
throw std::runtime_error("get_surface() failed!");
}
m_timer.reset();
m_timer.start();
switch (mode)
{
case MODE_CPU:
{
// process video frame on CPU
UINT subResource = ::D3D11CalcSubresource(0, 0, 1);
D3D11_MAPPED_SUBRESOURCE mappedTex;
r = m_pD3D11Ctx->Map(pSurface, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex);
if (FAILED(r))
{
throw std::runtime_error("surface mapping failed!");
}
cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, (int)mappedTex.RowPitch);
if (m_demo_processing)
{
// blur data from D3D11 surface with OpenCV on CPU
cv::blur(m, m, cv::Size(15, 15));
}
m_timer.stop();
cv::String strMode = cv::format("mode: %s", m_modeStr[MODE_CPU].c_str());
cv::String strProcessing = m_demo_processing ? "blur frame" : "copy frame";
cv::String strTime = cv::format("time: %4.3f msec", m_timer.getTimeMilli());
cv::String strDevName = cv::format("OpenCL device: %s", m_oclDevName.c_str());
cv::putText(m, strMode, cv::Point(0, 20), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(m, strProcessing, cv::Point(0, 40), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(m, strTime, cv::Point(0, 60), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(m, strDevName, cv::Point(0, 80), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
m_pD3D11Ctx->Unmap(pSurface, subResource);
break;
}
case MODE_GPU_RGBA:
case MODE_GPU_NV12:
{
// process video frame on GPU
cv::UMat u;
cv::directx::convertFromD3D11Texture2D(pSurface, u);
if (m_demo_processing)
{
// blur data from D3D11 surface with OpenCV on GPU with OpenCL
cv::blur(u, u, cv::Size(15, 15));
}
m_timer.stop();
cv::String strMode = cv::format("mode: %s", m_modeStr[mode].c_str());
cv::String strProcessing = m_demo_processing ? "blur frame" : "copy frame";
cv::String strTime = cv::format("time: %4.3f msec", m_timer.getTimeMilli());
cv::String strDevName = cv::format("OpenCL device: %s", m_oclDevName.c_str());
cv::putText(u, strMode, cv::Point(0, 20), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(u, strProcessing, cv::Point(0, 40), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(u, strTime, cv::Point(0, 60), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::putText(u, strDevName, cv::Point(0, 80), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 200), 2);
cv::directx::convertToD3D11Texture2D(u, pSurface);
if (mode == MODE_GPU_NV12)
{
// just for rendering, we need to convert NV12 to RGBA.
m_pD3D11Ctx->CopyResource(m_pSurfaceNV12_cpu_copy, m_pSurfaceNV12);
// process video frame on CPU
{
UINT subResource = ::D3D11CalcSubresource(0, 0, 1);
D3D11_MAPPED_SUBRESOURCE mappedTex;
r = m_pD3D11Ctx->Map(m_pSurfaceNV12_cpu_copy, subResource, D3D11_MAP_READ, 0, &mappedTex);
if (FAILED(r))
{
throw std::runtime_error("surface mapping failed!");
}
cv::Mat frame_nv12(m_height + (m_height / 2), m_width, CV_8UC1, mappedTex.pData, mappedTex.RowPitch);
cv::cvtColor(frame_nv12, m_frame_rgba, cv::COLOR_YUV2RGBA_NV12);
m_pD3D11Ctx->Unmap(m_pSurfaceNV12_cpu_copy, subResource);
}
{
UINT subResource = ::D3D11CalcSubresource(0, 0, 1);
D3D11_MAPPED_SUBRESOURCE mappedTex;
r = m_pD3D11Ctx->Map(m_pSurfaceRGBA, subResource, D3D11_MAP_WRITE_DISCARD, 0, &mappedTex);
if (FAILED(r))
{
throw std::runtime_error("surface mapping failed!");
}
cv::Mat m(m_height, m_width, CV_8UC4, mappedTex.pData, mappedTex.RowPitch);
m_frame_rgba.copyTo(m);
m_pD3D11Ctx->Unmap(m_pSurfaceRGBA, subResource);
}
pSurface = m_pSurfaceRGBA;
}
break;
}
} // switch
// traditional DX render pipeline:
// BitBlt surface to backBuffer and flip backBuffer to frontBuffer
m_pD3D11Ctx->CopyResource(m_pBackBuffer, pSurface);
// present the back buffer contents to the display
// switch the back buffer and the front buffer
r = m_pD3D11SwapChain->Present(0, 0);
if (FAILED(r))
{
throw std::runtime_error("switch betweem fronat and back buffers failed!");
}
} // try
catch (const cv::Exception& e)
{
std::cerr << "Exception: " << e.what() << std::endl;
cleanup();
return 10;
}
catch (const std::exception& e)
{
std::cerr << "Exception: " << e.what() << std::endl;
cleanup();
return 11;
}
return EXIT_SUCCESS;
} // render()
int cleanup(void)
{
SAFE_RELEASE(m_pSurfaceRGBA);
SAFE_RELEASE(m_pSurfaceNV12);
SAFE_RELEASE(m_pSurfaceNV12_cpu_copy);
SAFE_RELEASE(m_pBackBuffer);
SAFE_RELEASE(m_pD3D11SwapChain);
SAFE_RELEASE(m_pRenderTarget);
SAFE_RELEASE(m_pD3D11Dev);
SAFE_RELEASE(m_pD3D11Ctx);
D3DSample::cleanup();
return EXIT_SUCCESS;
} // cleanup()
protected:
void convert_I420_to_NV12(cv::Mat& i420, cv::Mat& nv12, int width, int height)
{
nv12.create(i420.rows, i420.cols, CV_8UC1);
unsigned char* pSrcY = i420.data;
unsigned char* pDstY = nv12.data;
size_t srcStep = i420.step[0];
size_t dstStep = nv12.step[0];
{
unsigned char* src;
unsigned char* dst;
// copy Y plane
for (int i = 0; i < height; i++)
{
src = pSrcY + i*srcStep;
dst = pDstY + i*dstStep;
for (int j = 0; j < width; j++)
{
dst[j] = src[j];
}
}
}
{
// copy U/V planes to UV plane
unsigned char* pSrcU;
unsigned char* pSrcV;
unsigned char* pDstUV;
size_t uv_offset = height * dstStep;
for (int i = 0; i < height / 2; i++)
{
pSrcU = pSrcY + height*width + i*(width / 2);
pSrcV = pSrcY + height*width + (height / 2) * (width / 2) + i*(width / 2);
pDstUV = pDstY + uv_offset + i*dstStep;
for (int j = 0; j < width / 2; j++)
{
pDstUV[j*2 + 0] = pSrcU[j];
pDstUV[j*2 + 1] = pSrcV[j];
}
}
}
return;
}
private:
ID3D11Device* m_pD3D11Dev;
IDXGISwapChain* m_pD3D11SwapChain;
ID3D11DeviceContext* m_pD3D11Ctx;
ID3D11Texture2D* m_pBackBuffer;
ID3D11Texture2D* m_pSurfaceRGBA;
ID3D11Texture2D* m_pSurfaceNV12;
ID3D11Texture2D* m_pSurfaceNV12_cpu_copy;
ID3D11RenderTargetView* m_pRenderTarget;
cv::ocl::Context m_oclCtx;
cv::String m_oclPlatformName;
cv::String m_oclDevName;
bool m_nv12_available;
cv::Mat m_frame_i420;
cv::Mat m_frame_nv12;
};
// main func
int main(int argc, char** argv)
{
std::string title = "D3D11 interop sample";
return d3d_app<D3D11WinApp>(argc, argv, title);
}