opencv/samples/python/tracker.py
Onur Can KARAMAN aa11a898a4 sample: tracker parameters updated
Signed-off-by: Onur Can KARAMAN <onurcankaraman340@gmail.com>
2024-09-14 23:36:57 +03:00

182 lines
8.4 KiB
Python

#!/usr/bin/env python
'''
Tracker demo
For usage download models by following links
For GOTURN:
goturn.prototxt and goturn.caffemodel: https://github.com/opencv/opencv_extra/tree/c4219d5eb3105ed8e634278fad312a1a8d2c182d/testdata/tracking
For DaSiamRPN:
network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
For NanoTrack:
nanotrack_backbone: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/nanotrackv2/nanotrack_backbone_sim.onnx
nanotrack_headneck: https://github.com/HonglinChu/SiamTrackers/blob/master/NanoTrack/models/nanotrackv2/nanotrack_head_sim.onnx
USAGE:
tracker.py [-h] [--input INPUT_VIDEO]
[--tracker_algo TRACKER_ALGO (mil, goturn, dasiamrpn, nanotrack, vittrack)]
[--goturn GOTURN_PROTOTXT]
[--goturn_model GOTURN_MODEL]
[--dasiamrpn_net DASIAMRPN_NET]
[--dasiamrpn_kernel_r1 DASIAMRPN_KERNEL_R1]
[--dasiamrpn_kernel_cls1 DASIAMRPN_KERNEL_CLS1]
[--nanotrack_backbone NANOTRACK_BACKBONE]
[--nanotrack_headneck NANOTRACK_TARGET]
[--vittrack_net VITTRACK_MODEL]
[--vittrack_net VITTRACK_MODEL]
[--tracking_score_threshold TRACKING SCORE THRESHOLD FOR ONLY VITTRACK]
[--backend CHOOSE ONE OF COMPUTATION BACKEND]
[--target CHOOSE ONE OF COMPUTATION TARGET]
'''
# Python 2/3 compatibility
from __future__ import print_function
import sys
import numpy as np
import cv2 as cv
import argparse
from video import create_capture, presets
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
class App(object):
def __init__(self, args):
self.args = args
self.trackerAlgorithm = args.tracker_algo
self.tracker = self.createTracker()
def createTracker(self):
if self.trackerAlgorithm == 'mil':
tracker = cv.TrackerMIL_create()
elif self.trackerAlgorithm == 'goturn':
params = cv.TrackerGOTURN_Params()
params.modelTxt = self.args.goturn
params.modelBin = self.args.goturn_model
tracker = cv.TrackerGOTURN_create(params)
elif self.trackerAlgorithm == 'dasiamrpn':
params = cv.TrackerDaSiamRPN_Params()
params.model = self.args.dasiamrpn_net
params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1
params.kernel_r1 = self.args.dasiamrpn_kernel_r1
params.backend = args.backend
params.target = args.target
tracker = cv.TrackerDaSiamRPN_create(params)
elif self.trackerAlgorithm == 'nanotrack':
params = cv.TrackerNano_Params()
params.backbone = args.nanotrack_backbone
params.neckhead = args.nanotrack_headneck
params.backend = args.backend
params.target = args.target
tracker = cv.TrackerNano_create(params)
elif self.trackerAlgorithm == 'vittrack':
params = cv.TrackerVit_Params()
params.net = args.vittrack_net
params.tracking_score_threshold = args.tracking_score_threshold
params.backend = args.backend
params.target = args.target
tracker = cv.TrackerVit_create(params)
else:
sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn, nanotrack.".format(self.trackerAlgorithm))
return tracker
def initializeTracker(self, image):
while True:
print('==> Select object ROI for tracker ...')
bbox = cv.selectROI('tracking', image)
print('ROI: {}'.format(bbox))
if bbox[2] <= 0 or bbox[3] <= 0:
sys.exit("ROI selection cancelled. Exiting...")
try:
self.tracker.init(image, bbox)
except Exception as e:
print('Unable to initialize tracker with requested bounding box. Is there any object?')
print(e)
print('Try again ...')
continue
return
def run(self):
videoPath = self.args.input
print('Using video: {}'.format(videoPath))
camera = create_capture(cv.samples.findFileOrKeep(videoPath), presets['cube'])
if not camera.isOpened():
sys.exit("Can't open video stream: {}".format(videoPath))
ok, image = camera.read()
if not ok:
sys.exit("Can't read first frame")
assert image is not None
cv.namedWindow('tracking')
self.initializeTracker(image)
print("==> Tracking is started. Press 'SPACE' to re-initialize tracker or 'ESC' for exit...")
while camera.isOpened():
ok, image = camera.read()
if not ok:
print("Can't read frame")
break
ok, newbox = self.tracker.update(image)
#print(ok, newbox)
if ok:
cv.rectangle(image, newbox, (200,0,0))
cv.imshow("tracking", image)
k = cv.waitKey(1)
if k == 32: # SPACE
self.initializeTracker(image)
if k == 27: # ESC
break
print('Done')
if __name__ == '__main__':
print(__doc__)
parser = argparse.ArgumentParser(description="Run tracker")
parser.add_argument("--input", type=str, default="vtest.avi", help="Path to video source")
parser.add_argument("--tracker_algo", type=str, default="nanotrack", help="One of available tracking algorithms: mil, goturn, dasiamrpn, nanotrack, vittrack")
parser.add_argument("--goturn", type=str, default="goturn.prototxt", help="Path to GOTURN architecture")
parser.add_argument("--goturn_model", type=str, default="goturn.caffemodel", help="Path to GOTERN model")
parser.add_argument("--dasiamrpn_net", type=str, default="dasiamrpn_model.onnx", help="Path to onnx model of DaSiamRPN net")
parser.add_argument("--dasiamrpn_kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Path to onnx model of DaSiamRPN kernel_r1")
parser.add_argument("--dasiamrpn_kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Path to onnx model of DaSiamRPN kernel_cls1")
parser.add_argument("--nanotrack_backbone", type=str, default="nanotrack_backbone_sim.onnx", help="Path to onnx model of NanoTrack backBone")
parser.add_argument("--nanotrack_headneck", type=str, default="nanotrack_head_sim.onnx", help="Path to onnx model of NanoTrack headNeck")
parser.add_argument("--vittrack_net", type=str, default="vitTracker.onnx", help="Path to onnx model of vittrack")
parser.add_argument('--tracking_score_threshold', type=float, help="Tracking score threshold. If a bbox of score >= 0.3, it is considered as found ")
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Halide language (http://halide-lang.org/), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation, "
"%d: VKCOM, "
"%d: CUDA"% backends)
parser.add_argument("--target", choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help="Choose one of target computation devices: "
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: VPU, '
'%d: VULKAN, '
'%d: CUDA, '
'%d: CUDA fp16 (half-float preprocess)'% targets)
args = parser.parse_args()
App(args).run()
cv.destroyAllWindows()