opencv/samples/cpp/macbeth_chart_detection.cpp
Gursimar Singh bbd36a0ec1
Merge pull request #27246 from gursimarsingh:bug_fix/mcc_dnn_dependency
Fix hard dependency of dnn for mcc module. #27246

Currently building objdetect module without dnn fails due to mcc module. This PR makes the dependency optional, by checking if DNN is available in mcc module. 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2025-04-22 08:27:36 +03:00

228 lines
7.7 KiB
C++

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/objdetect.hpp>
#ifdef HAVE_OPENCV_DNN
#include <opencv2/dnn.hpp>
#include "../dnn/common.hpp"
#endif
#include <iostream>
using namespace std;
using namespace cv;
#ifdef HAVE_OPENCV_DNN
using namespace cv::dnn;
#endif
using namespace mcc;
const string about =
"This sample demonstrates mcc checker detection with DNN based model and thresholding (default) techniques.\n\n"
"To run default:\n"
"\t ./example_cpp_macbeth_chart_detection --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)\n"
#ifdef HAVE_OPENCV_DNN
"With DNN model:\n"
"\t ./example_cpp_macbeth_chart_detection mcc --input=path/to/your/input/image/or/video\n\n"
"Model path can also be specified using --model argument. And config path can be specified using --config. Download it using python download_models.py mcc from dnn samples directory\n\n"
#else
"Note: DNN-based detection is not available in this build.\n\n"
#endif
;
const string param_keys =
"{ help h | | Print help message. }"
#ifdef HAVE_OPENCV_DNN
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
#endif
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ type | 0 | chartType: 0-Standard, 1-DigitalSG, 2-Vinyl, default:0 }"
"{ num_charts | 1 | Maximum number of charts in the image }"
#ifdef HAVE_OPENCV_DNN
"{ model | | Path to the model file for using dnn model. }";
#else
;
#endif
#ifdef HAVE_OPENCV_DNN
const string backend_keys = format(
"{ backend | default | Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN }");
const string target_keys = format(
"{ target | cpu | Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"vpu: VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
#endif
// Initialize keys before use
string keys = param_keys;
static void initKeys() {
#ifdef HAVE_OPENCV_DNN
keys += backend_keys + target_keys;
#endif
}
static bool processFrame(const Mat& frame, Ptr<CCheckerDetector> detector, Mat& src, Mat& tgt, int nc){
Mat imageCopy = frame.clone();
if (!detector->process(frame, nc))
{
return false;
}
vector<Ptr<CChecker>> checkers = detector->getListColorChecker();
detector->draw(checkers, frame);
src = checkers[0]->getChartsRGB(false);
tgt = detector->getRefColors();
imshow("Image result", frame);
imshow("Original", imageCopy);
return true;
}
int main(int argc, char *argv[])
{
initKeys();
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
cout << about << endl;
parser.printMessage();
return -1;
}
#ifdef HAVE_OPENCV_DNN
string modelName = parser.get<String>("@alias");
string zooFile = parser.get<String>("zoo");
const char* path = getenv("OPENCV_SAMPLES_DATA_PATH");
if ((path != NULL) || parser.has("@alias") || (parser.get<String>("model") != "")) {
zooFile = findFile(zooFile);
}
else{
cout<<"[WARN] set the environment variables or pass the arguments --model, --config and models.yml file using --zoo for using dnn based detector. Continuing with default detector.\n\n";
}
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
#endif
int t = parser.get<int>("type");
CV_Assert(0 <= t && t <= 2);
ColorChart chartType = ColorChart(t);
#ifdef HAVE_OPENCV_DNN
const string sha1 = parser.get<String>("sha1");
const string model_path = findModel(parser.get<string>("model"), sha1);
const string config_sha1 = parser.get<String>("config_sha1");
const string pbtxt_path = findModel(parser.get<string>("config"), config_sha1);
const string backend = parser.get<String>("backend");
const string target = parser.get<String>("target");
#endif
int nc = parser.get<int>("num_charts");
Ptr<CCheckerDetector> detector;
#ifdef HAVE_OPENCV_DNN
if (model_path != "" && pbtxt_path != ""){
EngineType engine = ENGINE_AUTO;
if (backend != "default" || target != "cpu"){
engine = ENGINE_CLASSIC;
}
Net net = readNetFromTensorflow(model_path, pbtxt_path, engine);
net.setPreferableBackend(getBackendID(backend));
net.setPreferableTarget(getTargetID(target));
detector = CCheckerDetector::create(net);
cout<<"Detecting checkers using neural network."<<endl;
}
else{
detector = CCheckerDetector::create();
}
#else
detector = CCheckerDetector::create();
#endif
detector->setColorChartType(chartType);
bool isVideo = true;
Mat image;
VideoCapture cap;
if (parser.has("input")){
const string inputFile = parser.get<String>("input");
image = imread(findFile(inputFile));
if (!image.empty())
{
isVideo = false;
}
else
{
// Not an image, so try opening it as a video.
cap.open(findFile(inputFile));
if (!cap.isOpened())
{
cout << "[ERROR] Could not open file as an image or video: " << inputFile << endl;
return -1;
}
}
}
else
cap.open(0);
Mat src, tgt;
bool found = false;
if (isVideo){
cout<<"To print the actual colors and reference colors for current frame press SPACEBAR. To resume press SPACEBAR again"<<endl;
while (cap.grab())
{
Mat frame;
cap.retrieve(frame);
found = processFrame(frame, detector, src, tgt, nc);
int key = waitKey(10);
if (key == ' '){
if(found){
cout<<"Reference colors: "<<tgt<<endl<<"--------------------"<<endl;
cout<<"Actual colors: "<<src<<endl<<endl;
cout<<"Press spacebar to resume."<<endl;
waitKey(0);
cout << "Resumed! Processing continues..." << endl;
}
else{
cout<<"No color chart detected!!"<<endl;
}
}
else if (key == 27) exit(0);
}
if(found){
cout<<"Reference colors: "<<tgt<<endl<<"--------------------"<<endl;
cout<<"Actual colors: "<<src<<endl<<endl;
}
}
else{
found = processFrame(image, detector, src, tgt, nc);
if(found){
cout<<"Reference colors: "<<tgt<<endl<<"--------------------"<<endl;
cout<<"Actual colors: "<<src<<endl<<endl;
waitKey(0);
}
else{
cout<<"No chart detected!!"<<endl;
}
}
return 0;
}