mirror of
https://github.com/opencv/opencv.git
synced 2025-06-13 13:13:26 +08:00

Added DNN based deblurring samples #27349 Corresponding pull request adding quantized onnx model to opencv_zoo: https://github.com/opencv/opencv_zoo/pull/295 Model size: 88MB ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
137 lines
5.0 KiB
C++
137 lines
5.0 KiB
C++
/*
|
|
This file is part of OpenCV project.
|
|
It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
of this distribution and at http://opencv.org/license.html.
|
|
|
|
This sample deblurs the given blurry image.
|
|
|
|
Copyright (C) 2025, Bigvision LLC.
|
|
|
|
How to use:
|
|
Sample command to run:
|
|
`./example_dnn_deblurring`
|
|
|
|
You can download NAFNet deblurring model using
|
|
`python download_models.py NAFNet`
|
|
|
|
References:
|
|
Github: https://github.com/megvii-research/NAFNet
|
|
PyTorch model: https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view
|
|
|
|
PyTorch model was converted to ONNX and then ONNX model was further quantized using block quantization from [opencv_zoo](https://github.com/opencv/opencv_zoo/blob/main/tools/quantize/block_quantize.py)
|
|
|
|
Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
#include "common.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace dnn;
|
|
using namespace std;
|
|
|
|
const string about = "Use this script for image deblurring using OpenCV. \n\n"
|
|
"Firstly, download required models i.e. NAFNet using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
|
|
"To run:\n"
|
|
"\t Example: ./example_dnn_deblurring [--input=<image_name>] \n\n"
|
|
"Deblurring model path can also be specified using --model argument.\n\n";
|
|
|
|
const string param_keys =
|
|
"{ help h | | show help message}"
|
|
"{ @alias | NAFNet | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
|
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
|
|
"{ input i | licenseplate_motion.jpg | image file path}";
|
|
|
|
const string backend_keys = format(
|
|
"{ backend | default | Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN }");
|
|
|
|
const string target_keys = format(
|
|
"{ target | cpu | Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"vpu: VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
|
|
|
|
string keys = param_keys + backend_keys + target_keys;
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (!parser.has("@alias") || parser.has("help"))
|
|
{
|
|
cout<<about<<endl;
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
string modelName = parser.get<String>("@alias");
|
|
string zooFile = findFile(parser.get<String>("zoo"));
|
|
keys += genPreprocArguments(modelName, zooFile);
|
|
parser = CommandLineParser(argc, argv, keys);
|
|
parser.about("Use this script to run image deblurring using OpenCV.");
|
|
|
|
const string sha1 = parser.get<String>("sha1");
|
|
const string modelPath = findModel(parser.get<String>("model"), sha1);
|
|
string imgPath = parser.get<String>("input");
|
|
const string backend = parser.get<String>("backend");
|
|
const string target = parser.get<String>("target");
|
|
float scale = parser.get<float>("scale");
|
|
bool swapRB = parser.get<bool>("rgb");
|
|
Scalar mean_v = parser.get<Scalar>("mean");
|
|
|
|
EngineType engine = ENGINE_AUTO;
|
|
if (backend != "default" || target != "cpu"){
|
|
engine = ENGINE_CLASSIC;
|
|
}
|
|
|
|
Net net = readNetFromONNX(modelPath, engine);
|
|
net.setPreferableBackend(getBackendID(backend));
|
|
net.setPreferableTarget(getTargetID(target));
|
|
|
|
Mat inputImage = imread(findFile(imgPath));
|
|
if (inputImage.empty()) {
|
|
cerr << "Error: Input image could not be loaded." << endl;
|
|
return -1;
|
|
}
|
|
Mat image = inputImage.clone();
|
|
|
|
Mat image_blob = blobFromImage(image, scale, Size(image.cols, image.rows), mean_v, swapRB, false);
|
|
|
|
net.setInput(image_blob);
|
|
Mat output = net.forward();
|
|
|
|
// Post Processing
|
|
Mat output_transposed(3, &output.size[1], CV_32F, output.ptr<float>());
|
|
|
|
vector<Mat> channels = {
|
|
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(2)),
|
|
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(1)),
|
|
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(0))
|
|
};
|
|
|
|
Mat outputImage;
|
|
merge(channels, outputImage);
|
|
outputImage.convertTo(outputImage, CV_8UC3, 255.0);
|
|
|
|
imshow("Input Image", inputImage);
|
|
imshow("Output Image", outputImage);
|
|
waitKey(0);
|
|
return 0;
|
|
}
|