opencv/samples/dnn/deblurring.cpp
Abhishek Gola ef9b42c05a
Merge pull request #27349 from abhishek-gola:deblurring_onnx_sample
Added DNN based deblurring samples #27349

Corresponding pull request adding quantized onnx model to opencv_zoo: https://github.com/opencv/opencv_zoo/pull/295

Model size: 88MB

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2025-06-11 13:29:06 +03:00

137 lines
5.0 KiB
C++

/*
This file is part of OpenCV project.
It is subject to the license terms in the LICENSE file found in the top-level directory
of this distribution and at http://opencv.org/license.html.
This sample deblurs the given blurry image.
Copyright (C) 2025, Bigvision LLC.
How to use:
Sample command to run:
`./example_dnn_deblurring`
You can download NAFNet deblurring model using
`python download_models.py NAFNet`
References:
Github: https://github.com/megvii-research/NAFNet
PyTorch model: https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view
PyTorch model was converted to ONNX and then ONNX model was further quantized using block quantization from [opencv_zoo](https://github.com/opencv/opencv_zoo/blob/main/tools/quantize/block_quantize.py)
Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.
*/
#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
#include "common.hpp"
using namespace cv;
using namespace dnn;
using namespace std;
const string about = "Use this script for image deblurring using OpenCV. \n\n"
"Firstly, download required models i.e. NAFNet using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"
"To run:\n"
"\t Example: ./example_dnn_deblurring [--input=<image_name>] \n\n"
"Deblurring model path can also be specified using --model argument.\n\n";
const string param_keys =
"{ help h | | show help message}"
"{ @alias | NAFNet | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }"
"{ input i | licenseplate_motion.jpg | image file path}";
const string backend_keys = format(
"{ backend | default | Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN }");
const string target_keys = format(
"{ target | cpu | Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"vpu: VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess) }");
string keys = param_keys + backend_keys + target_keys;
int main(int argc, char **argv)
{
CommandLineParser parser(argc, argv, keys);
if (!parser.has("@alias") || parser.has("help"))
{
cout<<about<<endl;
parser.printMessage();
return 0;
}
string modelName = parser.get<String>("@alias");
string zooFile = findFile(parser.get<String>("zoo"));
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run image deblurring using OpenCV.");
const string sha1 = parser.get<String>("sha1");
const string modelPath = findModel(parser.get<String>("model"), sha1);
string imgPath = parser.get<String>("input");
const string backend = parser.get<String>("backend");
const string target = parser.get<String>("target");
float scale = parser.get<float>("scale");
bool swapRB = parser.get<bool>("rgb");
Scalar mean_v = parser.get<Scalar>("mean");
EngineType engine = ENGINE_AUTO;
if (backend != "default" || target != "cpu"){
engine = ENGINE_CLASSIC;
}
Net net = readNetFromONNX(modelPath, engine);
net.setPreferableBackend(getBackendID(backend));
net.setPreferableTarget(getTargetID(target));
Mat inputImage = imread(findFile(imgPath));
if (inputImage.empty()) {
cerr << "Error: Input image could not be loaded." << endl;
return -1;
}
Mat image = inputImage.clone();
Mat image_blob = blobFromImage(image, scale, Size(image.cols, image.rows), mean_v, swapRB, false);
net.setInput(image_blob);
Mat output = net.forward();
// Post Processing
Mat output_transposed(3, &output.size[1], CV_32F, output.ptr<float>());
vector<Mat> channels = {
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(2)),
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(1)),
Mat(output_transposed.size[1], output_transposed.size[2], CV_32F, output_transposed.ptr<float>(0))
};
Mat outputImage;
merge(channels, outputImage);
outputImage.convertTo(outputImage, CV_8UC3, 255.0);
imshow("Input Image", inputImage);
imshow("Output Image", outputImage);
waitKey(0);
return 0;
}