opencv/samples/dnn/deblurring.py
Abhishek Gola ef9b42c05a
Merge pull request #27349 from abhishek-gola:deblurring_onnx_sample
Added DNN based deblurring samples #27349

Corresponding pull request adding quantized onnx model to opencv_zoo: https://github.com/opencv/opencv_zoo/pull/295

Model size: 88MB

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2025-06-11 13:29:06 +03:00

116 lines
4.4 KiB
Python

#!/usr/bin/env python
'''
This file is part of OpenCV project.
It is subject to the license terms in the LICENSE file found in the top-level directory
of this distribution and at http://opencv.org/license.html.
This sample deblurs the given blurry image.
Copyright (C) 2025, Bigvision LLC.
How to use:
Sample command to run:
`python deblurring.py`
You can download NAFNet deblurring model using
`python download_models.py NAFNet`
References:
Github: https://github.com/megvii-research/NAFNet
PyTorch model: https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view
PyTorch model was converted to ONNX and then ONNX model was further quantized using block quantization from [opencv_zoo](https://github.com/opencv/opencv_zoo/blob/main/tools/quantize/block_quantize.py)
Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to point to the directory where models are downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.
'''
import argparse
import cv2 as cv
import numpy as np
from common import *
def help():
print(
'''
Use this script for image deblurring using OpenCV.
Firstly, download required models i.e. NAFNet using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.
To run:
Example: python deblurring.py [--input=<image_name>]
Deblurring model path can also be specified using --model argument.
'''
)
def get_args_parser():
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', '-i', default="licenseplate_motion.jpg", help='Path to image file.', required=False)
parser.add_argument('--backend', default="default", type=str, choices=backends,
help="Choose one of computation backends: "
"default: automatically (by default), "
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"opencv: OpenCV implementation, "
"vkcom: VKCOM, "
"cuda: CUDA, "
"webnn: WebNN")
parser.add_argument('--target', default="cpu", type=str, choices=targets,
help="Choose one of target computation devices: "
"cpu: CPU target (by default), "
"opencl: OpenCL, "
"opencl_fp16: OpenCL fp16 (half-float precision), "
"ncs2_vpu: NCS2 VPU, "
"hddl_vpu: HDDL VPU, "
"vulkan: Vulkan, "
"cuda: CUDA, "
"cuda_fp16: CUDA fp16 (half-float preprocess)")
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'deblurring', prefix="", alias="NAFNet")
parser = argparse.ArgumentParser(parents=[parser],
description='Image deblurring using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
return parser.parse_args()
def main():
if hasattr(args, 'help'):
help()
exit(1)
args.model = findModel(args.model, args.sha1)
engine = cv.dnn.ENGINE_AUTO
if args.backend != "default" or args.target != "cpu":
engine = cv.dnn.ENGINE_CLASSIC
net = cv.dnn.readNetFromONNX(args.model, engine)
net.setPreferableBackend(get_backend_id(args.backend))
net.setPreferableTarget(get_target_id(args.target))
input_image = cv.imread(findFile(args.input))
image = input_image.copy()
height, width = image.shape[:2]
image_blob = cv.dnn.blobFromImage(image, args.scale, (width, height), args.mean, args.rgb, False)
net.setInput(image_blob)
out = net.forward()
# Postprocessing
output = out[0]
output = np.transpose(output, (1, 2, 0))
output = np.clip(output * 255.0, 0, 255).astype(np.uint8)
out_image = cv.cvtColor(output, cv.COLOR_RGB2BGR)
cv.imshow("input image: ", input_image)
cv.imshow("output image: ", out_image)
cv.waitKey(0)
if __name__ == '__main__':
args = get_args_parser()
main()