mirror of
https://github.com/opencv/opencv.git
synced 2025-01-24 03:03:12 +08:00
535 lines
22 KiB
C++
535 lines
22 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
void cv::cuda::warpAffine(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); }
|
|
void cv::cuda::buildWarpAffineMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::warpPerspective(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); }
|
|
void cv::cuda::buildWarpPerspectiveMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::rotate(InputArray, OutputArray, Size, double, double, double, int, Stream&) { throw_no_cuda(); }
|
|
|
|
#else // HAVE_CUDA
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace imgproc
|
|
{
|
|
void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
|
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
|
|
|
|
void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation,
|
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
|
|
}
|
|
}}}
|
|
|
|
void cv::cuda::buildWarpAffineMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::imgproc;
|
|
|
|
Mat M = _M.getMat();
|
|
|
|
CV_Assert( M.rows == 2 && M.cols == 3 );
|
|
|
|
_xmap.create(dsize, CV_32FC1);
|
|
_ymap.create(dsize, CV_32FC1);
|
|
|
|
GpuMat xmap = _xmap.getGpuMat();
|
|
GpuMat ymap = _ymap.getGpuMat();
|
|
|
|
float coeffs[2 * 3];
|
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);
|
|
|
|
if (inverse)
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
else
|
|
{
|
|
cv::Mat iM;
|
|
invertAffineTransform(M, iM);
|
|
iM.convertTo(coeffsMat, coeffsMat.type());
|
|
}
|
|
|
|
buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::cuda::buildWarpPerspectiveMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::imgproc;
|
|
|
|
Mat M = _M.getMat();
|
|
|
|
CV_Assert( M.rows == 3 && M.cols == 3 );
|
|
|
|
_xmap.create(dsize, CV_32FC1);
|
|
_ymap.create(dsize, CV_32FC1);
|
|
|
|
GpuMat xmap = _xmap.getGpuMat();
|
|
GpuMat ymap = _ymap.getGpuMat();
|
|
|
|
float coeffs[3 * 3];
|
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);
|
|
|
|
if (inverse)
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
else
|
|
{
|
|
cv::Mat iM;
|
|
invert(M, iM);
|
|
iM.convertTo(coeffsMat, coeffsMat.type());
|
|
}
|
|
|
|
buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template <int DEPTH> struct NppWarpFunc
|
|
{
|
|
typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;
|
|
|
|
typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_type* pDst,
|
|
int dstStep, NppiRect dstRoi, const double coeffs[][3],
|
|
int interpolation);
|
|
};
|
|
|
|
template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp
|
|
{
|
|
typedef typename NppWarpFunc<DEPTH>::npp_type npp_type;
|
|
|
|
static void call(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream)
|
|
{
|
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
|
|
|
|
NppiSize srcsz;
|
|
srcsz.height = src.rows;
|
|
srcsz.width = src.cols;
|
|
|
|
NppiRect srcroi;
|
|
srcroi.x = 0;
|
|
srcroi.y = 0;
|
|
srcroi.height = src.rows;
|
|
srcroi.width = src.cols;
|
|
|
|
NppiRect dstroi;
|
|
dstroi.x = 0;
|
|
dstroi.y = 0;
|
|
dstroi.height = dst.rows;
|
|
dstroi.width = dst.cols;
|
|
|
|
cv::cuda::NppStreamHandler h(stream);
|
|
|
|
nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi,
|
|
dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi,
|
|
coeffs, npp_inter[interpolation]) );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
}
|
|
|
|
void cv::cuda::warpAffine(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
|
|
{
|
|
GpuMat src = _src.getGpuMat();
|
|
Mat M = _M.getMat();
|
|
|
|
CV_Assert( M.rows == 2 && M.cols == 3 );
|
|
|
|
const int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
|
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
|
|
CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP );
|
|
|
|
_dst.create(dsize, src.type());
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
Size wholeSize;
|
|
Point ofs;
|
|
src.locateROI(wholeSize, ofs);
|
|
|
|
static const bool useNppTab[6][4][3] =
|
|
{
|
|
{
|
|
{false, false, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, true}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, true}
|
|
}
|
|
};
|
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
|
|
// NPP bug on float data
|
|
useNpp = useNpp && src.depth() != CV_32F;
|
|
|
|
if (useNpp)
|
|
{
|
|
typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);
|
|
|
|
static const func_t funcs[2][6][4] =
|
|
{
|
|
{
|
|
{NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call},
|
|
{NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call}
|
|
},
|
|
{
|
|
{NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call},
|
|
{NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call}
|
|
}
|
|
};
|
|
|
|
dst.setTo(borderValue, stream);
|
|
|
|
double coeffs[2][3];
|
|
Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
|
|
CV_Assert(func != 0);
|
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
|
|
}
|
|
else
|
|
{
|
|
using namespace cv::cuda::device::imgproc;
|
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
|
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
|
|
|
|
static const func_t funcs[6][4] =
|
|
{
|
|
{warpAffine_gpu<uchar> , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3> , warpAffine_gpu<uchar4> },
|
|
{0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/ , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/},
|
|
{warpAffine_gpu<ushort> , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3> , warpAffine_gpu<ushort4> },
|
|
{warpAffine_gpu<short> , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3> , warpAffine_gpu<short4> },
|
|
{0 /*warpAffine_gpu<int>*/ , 0 /*warpAffine_gpu<int2>*/ , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ },
|
|
{warpAffine_gpu<float> , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3> , warpAffine_gpu<float4> }
|
|
};
|
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1];
|
|
CV_Assert(func != 0);
|
|
|
|
float coeffs[2 * 3];
|
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);
|
|
|
|
if (flags & WARP_INVERSE_MAP)
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
else
|
|
{
|
|
cv::Mat iM;
|
|
invertAffineTransform(M, iM);
|
|
iM.convertTo(coeffsMat, coeffsMat.type());
|
|
}
|
|
|
|
Scalar_<float> borderValueFloat;
|
|
borderValueFloat = borderValue;
|
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
|
|
dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20));
|
|
}
|
|
}
|
|
|
|
void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
|
|
{
|
|
GpuMat src = _src.getGpuMat();
|
|
Mat M = _M.getMat();
|
|
|
|
CV_Assert( M.rows == 3 && M.cols == 3 );
|
|
|
|
const int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
|
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
|
|
CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ;
|
|
|
|
_dst.create(dsize, src.type());
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
Size wholeSize;
|
|
Point ofs;
|
|
src.locateROI(wholeSize, ofs);
|
|
|
|
static const bool useNppTab[6][4][3] =
|
|
{
|
|
{
|
|
{false, false, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false},
|
|
{false, false, false}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, true}
|
|
},
|
|
{
|
|
{false, true, true},
|
|
{false, false, false},
|
|
{false, true, true},
|
|
{false, false, true}
|
|
}
|
|
};
|
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
|
|
// NPP bug on float data
|
|
useNpp = useNpp && src.depth() != CV_32F;
|
|
|
|
if (useNpp)
|
|
{
|
|
typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);
|
|
|
|
static const func_t funcs[2][6][4] =
|
|
{
|
|
{
|
|
{NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
|
|
{NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
|
|
},
|
|
{
|
|
{NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
|
|
{0, 0, 0, 0},
|
|
{NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
|
|
{NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
|
|
}
|
|
};
|
|
|
|
dst.setTo(borderValue, stream);
|
|
|
|
double coeffs[3][3];
|
|
Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
|
|
CV_Assert(func != 0);
|
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
|
|
}
|
|
else
|
|
{
|
|
using namespace cv::cuda::device::imgproc;
|
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
|
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
|
|
|
|
static const func_t funcs[6][4] =
|
|
{
|
|
{warpPerspective_gpu<uchar> , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3> , warpPerspective_gpu<uchar4> },
|
|
{0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/ , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
|
|
{warpPerspective_gpu<ushort> , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3> , warpPerspective_gpu<ushort4> },
|
|
{warpPerspective_gpu<short> , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3> , warpPerspective_gpu<short4> },
|
|
{0 /*warpPerspective_gpu<int>*/ , 0 /*warpPerspective_gpu<int2>*/ , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
|
|
{warpPerspective_gpu<float> , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3> , warpPerspective_gpu<float4> }
|
|
};
|
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1];
|
|
CV_Assert(func != 0);
|
|
|
|
float coeffs[3 * 3];
|
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);
|
|
|
|
if (flags & WARP_INVERSE_MAP)
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
else
|
|
{
|
|
cv::Mat iM;
|
|
invert(M, iM);
|
|
iM.convertTo(coeffsMat, coeffsMat.type());
|
|
}
|
|
|
|
Scalar_<float> borderValueFloat;
|
|
borderValueFloat = borderValue;
|
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
|
|
dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20));
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// rotate
|
|
|
|
namespace
|
|
{
|
|
template <int DEPTH> struct NppRotateFunc
|
|
{
|
|
typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;
|
|
|
|
typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
|
|
npp_type* pDst, int nDstStep, NppiRect oDstROI,
|
|
double nAngle, double nShiftX, double nShiftY, int eInterpolation);
|
|
};
|
|
|
|
template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate
|
|
{
|
|
typedef typename NppRotateFunc<DEPTH>::npp_type npp_type;
|
|
|
|
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
|
|
{
|
|
(void)dsize;
|
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
|
|
|
|
NppStreamHandler h(stream);
|
|
|
|
NppiSize srcsz;
|
|
srcsz.height = src.rows;
|
|
srcsz.width = src.cols;
|
|
NppiRect srcroi;
|
|
srcroi.x = srcroi.y = 0;
|
|
srcroi.height = src.rows;
|
|
srcroi.width = src.cols;
|
|
NppiRect dstroi;
|
|
dstroi.x = dstroi.y = 0;
|
|
dstroi.height = dst.rows;
|
|
dstroi.width = dst.cols;
|
|
|
|
nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi,
|
|
dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
}
|
|
|
|
void cv::cuda::rotate(InputArray _src, OutputArray _dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
|
|
static const func_t funcs[6][4] =
|
|
{
|
|
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
|
|
{0,0,0,0},
|
|
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
|
|
};
|
|
|
|
GpuMat src = _src.getGpuMat();
|
|
|
|
CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F );
|
|
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
|
|
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
|
|
|
|
_dst.create(dsize, src.type());
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
dst.setTo(Scalar::all(0), stream);
|
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
#endif // HAVE_CUDA
|