mirror of
https://github.com/opencv/opencv.git
synced 2025-01-04 16:47:59 +08:00
413 lines
16 KiB
C++
413 lines
16 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_OBJDETECT_HPP__
|
|
#define __OPENCV_OBJDETECT_HPP__
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
typedef struct CvLatentSvmDetector CvLatentSvmDetector;
|
|
typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
|
|
|
|
namespace cv
|
|
{
|
|
|
|
///////////////////////////// Object Detection ////////////////////////////
|
|
|
|
/*
|
|
* This is a class wrapping up the structure CvLatentSvmDetector and functions working with it.
|
|
* The class goals are:
|
|
* 1) provide c++ interface;
|
|
* 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector.
|
|
*/
|
|
class CV_EXPORTS LatentSvmDetector
|
|
{
|
|
public:
|
|
struct CV_EXPORTS ObjectDetection
|
|
{
|
|
ObjectDetection();
|
|
ObjectDetection( const Rect& rect, float score, int classID = -1 );
|
|
Rect rect;
|
|
float score;
|
|
int classID;
|
|
};
|
|
|
|
LatentSvmDetector();
|
|
LatentSvmDetector( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );
|
|
virtual ~LatentSvmDetector();
|
|
|
|
virtual void clear();
|
|
virtual bool empty() const;
|
|
bool load( const std::vector<String>& filenames, const std::vector<String>& classNames = std::vector<String>() );
|
|
|
|
virtual void detect( const Mat& image,
|
|
std::vector<ObjectDetection>& objectDetections,
|
|
float overlapThreshold = 0.5f,
|
|
int numThreads = -1 );
|
|
|
|
const std::vector<String>& getClassNames() const;
|
|
size_t getClassCount() const;
|
|
|
|
private:
|
|
std::vector<CvLatentSvmDetector*> detectors;
|
|
std::vector<String> classNames;
|
|
};
|
|
|
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
|
|
CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, int groupThreshold, double eps = 0.2);
|
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
|
|
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
|
|
std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
|
|
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales,
|
|
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
|
|
|
class CV_EXPORTS FeatureEvaluator
|
|
{
|
|
public:
|
|
enum { HAAR = 0,
|
|
LBP = 1,
|
|
HOG = 2
|
|
};
|
|
|
|
virtual ~FeatureEvaluator();
|
|
|
|
virtual bool read(const FileNode& node);
|
|
virtual Ptr<FeatureEvaluator> clone() const;
|
|
virtual int getFeatureType() const;
|
|
|
|
virtual bool setImage(const Mat& img, Size origWinSize);
|
|
virtual bool setWindow(Point p);
|
|
|
|
virtual double calcOrd(int featureIdx) const;
|
|
virtual int calcCat(int featureIdx) const;
|
|
|
|
static Ptr<FeatureEvaluator> create(int type);
|
|
};
|
|
|
|
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
|
|
|
|
enum { CASCADE_DO_CANNY_PRUNING = 1,
|
|
CASCADE_SCALE_IMAGE = 2,
|
|
CASCADE_FIND_BIGGEST_OBJECT = 4,
|
|
CASCADE_DO_ROUGH_SEARCH = 8
|
|
};
|
|
|
|
class CV_EXPORTS_W CascadeClassifier
|
|
{
|
|
public:
|
|
CV_WRAP CascadeClassifier();
|
|
CV_WRAP CascadeClassifier( const String& filename );
|
|
virtual ~CascadeClassifier();
|
|
|
|
CV_WRAP virtual bool empty() const;
|
|
CV_WRAP bool load( const String& filename );
|
|
virtual bool read( const FileNode& node );
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image,
|
|
CV_OUT std::vector<Rect>& objects,
|
|
double scaleFactor = 1.1,
|
|
int minNeighbors = 3, int flags = 0,
|
|
Size minSize = Size(),
|
|
Size maxSize = Size() );
|
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image,
|
|
CV_OUT std::vector<Rect>& objects,
|
|
CV_OUT std::vector<int>& numDetections,
|
|
double scaleFactor=1.1,
|
|
int minNeighbors=3, int flags=0,
|
|
Size minSize=Size(),
|
|
Size maxSize=Size() );
|
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image,
|
|
CV_OUT std::vector<Rect>& objects,
|
|
CV_OUT std::vector<int>& rejectLevels,
|
|
CV_OUT std::vector<double>& levelWeights,
|
|
double scaleFactor = 1.1,
|
|
int minNeighbors = 3, int flags = 0,
|
|
Size minSize = Size(),
|
|
Size maxSize = Size(),
|
|
bool outputRejectLevels = false );
|
|
|
|
|
|
bool isOldFormatCascade() const;
|
|
virtual Size getOriginalWindowSize() const;
|
|
int getFeatureType() const;
|
|
bool setImage( const Mat& );
|
|
|
|
protected:
|
|
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
|
int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
|
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false );
|
|
|
|
virtual void detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates,
|
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
|
|
double scaleFactor, Size minObjectSize, Size maxObjectSize,
|
|
bool outputRejectLevels = false );
|
|
|
|
protected:
|
|
enum { BOOST = 0
|
|
};
|
|
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
|
|
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
|
|
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
|
|
DO_ROUGH_SEARCH = CASCADE_DO_ROUGH_SEARCH
|
|
};
|
|
|
|
friend class CascadeClassifierInvoker;
|
|
|
|
template<class FEval>
|
|
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
|
|
virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );
|
|
|
|
class Data
|
|
{
|
|
public:
|
|
struct CV_EXPORTS DTreeNode
|
|
{
|
|
int featureIdx;
|
|
float threshold; // for ordered features only
|
|
int left;
|
|
int right;
|
|
};
|
|
|
|
struct CV_EXPORTS DTree
|
|
{
|
|
int nodeCount;
|
|
};
|
|
|
|
struct CV_EXPORTS Stage
|
|
{
|
|
int first;
|
|
int ntrees;
|
|
float threshold;
|
|
};
|
|
|
|
bool read(const FileNode &node);
|
|
|
|
bool isStumpBased;
|
|
|
|
int stageType;
|
|
int featureType;
|
|
int ncategories;
|
|
Size origWinSize;
|
|
|
|
std::vector<Stage> stages;
|
|
std::vector<DTree> classifiers;
|
|
std::vector<DTreeNode> nodes;
|
|
std::vector<float> leaves;
|
|
std::vector<int> subsets;
|
|
};
|
|
|
|
Data data;
|
|
Ptr<FeatureEvaluator> featureEvaluator;
|
|
Ptr<CvHaarClassifierCascade> oldCascade;
|
|
|
|
public:
|
|
class CV_EXPORTS MaskGenerator
|
|
{
|
|
public:
|
|
virtual ~MaskGenerator() {}
|
|
virtual cv::Mat generateMask(const cv::Mat& src)=0;
|
|
virtual void initializeMask(const cv::Mat& /*src*/) {};
|
|
};
|
|
void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
|
|
Ptr<MaskGenerator> getMaskGenerator();
|
|
|
|
void setFaceDetectionMaskGenerator();
|
|
|
|
protected:
|
|
Ptr<MaskGenerator> maskGenerator;
|
|
};
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
|
|
|
// struct for detection region of interest (ROI)
|
|
struct DetectionROI
|
|
{
|
|
// scale(size) of the bounding box
|
|
double scale;
|
|
// set of requrested locations to be evaluated
|
|
std::vector<cv::Point> locations;
|
|
// vector that will contain confidence values for each location
|
|
std::vector<double> confidences;
|
|
};
|
|
|
|
struct CV_EXPORTS_W HOGDescriptor
|
|
{
|
|
public:
|
|
enum { L2Hys = 0
|
|
};
|
|
enum { DEFAULT_NLEVELS = 64
|
|
};
|
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
|
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
|
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
|
|
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
|
|
{}
|
|
|
|
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
|
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
|
|
int _histogramNormType=HOGDescriptor::L2Hys,
|
|
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
|
|
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
|
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
|
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
|
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
|
|
gammaCorrection(_gammaCorrection), nlevels(_nlevels)
|
|
{}
|
|
|
|
CV_WRAP HOGDescriptor(const String& filename)
|
|
{
|
|
load(filename);
|
|
}
|
|
|
|
HOGDescriptor(const HOGDescriptor& d)
|
|
{
|
|
d.copyTo(*this);
|
|
}
|
|
|
|
virtual ~HOGDescriptor() {}
|
|
|
|
CV_WRAP size_t getDescriptorSize() const;
|
|
CV_WRAP bool checkDetectorSize() const;
|
|
CV_WRAP double getWinSigma() const;
|
|
|
|
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
|
|
|
|
virtual bool read(FileNode& fn);
|
|
virtual void write(FileStorage& fs, const String& objname) const;
|
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname = String());
|
|
CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
|
|
virtual void copyTo(HOGDescriptor& c) const;
|
|
|
|
CV_WRAP virtual void compute(const Mat& img,
|
|
CV_OUT std::vector<float>& descriptors,
|
|
Size winStride = Size(), Size padding = Size(),
|
|
const std::vector<Point>& locations = std::vector<Point>()) const;
|
|
//with found weights output
|
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
|
CV_OUT std::vector<double>& weights,
|
|
double hitThreshold = 0, Size winStride = Size(),
|
|
Size padding = Size(),
|
|
const std::vector<Point>& searchLocations = std::vector<Point>()) const;
|
|
//without found weights output
|
|
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
|
double hitThreshold = 0, Size winStride = Size(),
|
|
Size padding = Size(),
|
|
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
|
|
//with result weights output
|
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
|
|
CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
|
|
Size winStride = Size(), Size padding = Size(), double scale = 1.05,
|
|
double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
|
|
//without found weights output
|
|
virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
|
|
double hitThreshold = 0, Size winStride = Size(),
|
|
Size padding = Size(), double scale = 1.05,
|
|
double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
|
|
|
|
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
|
|
Size paddingTL = Size(), Size paddingBR = Size()) const;
|
|
|
|
CV_WRAP static std::vector<float> getDefaultPeopleDetector();
|
|
CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
|
|
|
|
CV_PROP Size winSize;
|
|
CV_PROP Size blockSize;
|
|
CV_PROP Size blockStride;
|
|
CV_PROP Size cellSize;
|
|
CV_PROP int nbins;
|
|
CV_PROP int derivAperture;
|
|
CV_PROP double winSigma;
|
|
CV_PROP int histogramNormType;
|
|
CV_PROP double L2HysThreshold;
|
|
CV_PROP bool gammaCorrection;
|
|
CV_PROP std::vector<float> svmDetector;
|
|
CV_PROP int nlevels;
|
|
|
|
|
|
// evaluate specified ROI and return confidence value for each location
|
|
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
|
|
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
|
|
double hitThreshold = 0, cv::Size winStride = Size(),
|
|
cv::Size padding = Size()) const;
|
|
|
|
// evaluate specified ROI and return confidence value for each location in multiple scales
|
|
virtual void detectMultiScaleROI(const cv::Mat& img,
|
|
CV_OUT std::vector<cv::Rect>& foundLocations,
|
|
std::vector<DetectionROI>& locations,
|
|
double hitThreshold = 0,
|
|
int groupThreshold = 0) const;
|
|
|
|
// read/parse Dalal's alt model file
|
|
void readALTModel(String modelfile);
|
|
};
|
|
|
|
|
|
CV_EXPORTS_W void findDataMatrix(InputArray image,
|
|
CV_OUT std::vector<String>& codes,
|
|
OutputArray corners = noArray(),
|
|
OutputArrayOfArrays dmtx = noArray());
|
|
|
|
CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image,
|
|
const std::vector<String>& codes,
|
|
InputArray corners);
|
|
}
|
|
|
|
#include "opencv2/objdetect/linemod.hpp"
|
|
#include "opencv2/objdetect/erfilter.hpp"
|
|
|
|
#endif
|